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A B S T R A C T

Understanding the complex relationship between water, agriculture and poverty (WAP) is essential for informed policy-making in light of increasing demand for
scarce water resources and greater climatic variability. Yet, our understanding of the WAP nexus remains surprisingly undeveloped and dispersed across multiple
disciplines due to conceptual (biophysical and economic) and measurement issues. We argue that water for agriculture will need to be better managed for it to
contribute to reductions in poverty and vulnerabilities. Moreover, this management will need to consider not just quantities of water, but the quality of the water and
the multiple agricultural and non-agricultural uses. For this reason, expanding research in WAP needs to involve interdisciplinary efforts. We identify three key
knowledge gaps in WAP that are particularly pressing in light of greater climatic variability. These are climate change adaptation, over-abstraction of groundwater,
and water quality.

1. Introduction

Population pressures and economic development are increasing
demand for scarce water resources for competing uses. At the same
time, greater climatic variability means that there is more uncertainty
in terms of availability of water. The impacts of greater water scarcity
and climatic variability are unlikely to be evenly distributed. Poor and
marginalized populations, especially rural smallholders, are more likely
to be negatively impacted. As such, we need to better understand the
relationship between water and poverty. Moreover, since 70% of
human consumption of freshwater is used for agriculture, we need to
better understand the complex relationship between water, agriculture
and poverty (WAP) in order to generate rigorous evidence for informed
policy-making.

Yet, our understanding of the WAP nexus remains surprisingly un-
developed and dispersed across multiple disciplines (Jacoby, 2017).
Agricultural economists, for example, have tended to neglect water in
the last decade or so. Literature that focuses on the agriculture-poverty
link tends to take water as a given input (e.g. “rainfed agriculture”) and
analyses the adoption of variable inputs (e.g. seeds, fertilizer, herbi-
cides, etc.) conditional on land and water. For example, of the 12 ar-
ticles in the 2017 special issue of Food Policy on agriculture in Africa,
only one mentions water (aside from the overview article), and even
that is just a brief report that the incidence of irrigation is quite small
(Sheahan and Barrett, 2017). Similarly, resource economists have fo-
cused on the management of water resources in agriculture using prices

or water rights from the perspective of increasing allocative efficiency,
and internalizing externalities (Dinar and Mody, 2004; Bar-Shira et al.,
2006; Tsur et al., 2004; Rosegrant and Binswanger, 1994; Garrick et al.,
2013). That is, they focusing on the water-agriculture link. This does
not explicitly address poverty concerns, especially if increasing allo-
cations of water towards uses with higher net returns means diverting
water away from poorer populations.

Most of the economics literature that examines irrigation focuses on
whether farmers have access to irrigation water (Bhattarai, 2003;
Gebregziabher et al., 2009; Huang et al., 2005; Huang et al., 2006;
Mekonnen et al, 2019; Passarelli et al, 2018), rather than on the
quantity, timing and/or quality of the water that they use. Compara-
tively speaking, more attention has been devoted to examining the
adoption of irrigation technologies (e.g. Carter et al., 2016; Fraiture and
Giordano, 2014; Nakawuka et al., 2018; Namara et al., 2014). Much
less attention has been paid to the effect of irrigation on incomes (e.g.
Achempong et al., 2018; Adeoti et al., 2009; Balana et al. 2019; Dillon,
2011; Huang et al., 2005; Hussain and Hanjra, 2004), and on produc-
tion diversity, food consumption and nutrition (e.g. Burney and Naylor,
2012; Burney, et al., 2013; Domènech, 2015; Pandey et al, 2016;
Buisson and Balasubramanya, 2019).

The tendency to focus on just parts of the WAP nexus is mirrored in
the literature on the water-energy-food nexus. This literature tends to
focus mainly on the energy-food link where it addresses questions of
how easing access to energy through subsidies impacts cropping deci-
sions and farm incomes by easing access to groundwater for irrigation
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(e.g. see Mukherji et al, 2012; Badiani et al., 2012; Badiani-Magnusson
and Jessoe, 2018; Bardhan et al., 2012; Birner et al. 2011; Janakarajan
and Moench, 2006). More recently, this literature has examined the
suitability of solar pumps (e.g. Schmitter et al., 2018; Worqlul et al.,
2017) and the effect of this energy-related technology on food pro-
duction and incomes (e.g. Burney et al., 2013).

Understanding the role of water in agriculture and poverty is im-
portant, especially if irrigation reduces risks faced by farmers. With
climate change, irrigation and water storage are likely to become more
instrumental in providing enabling conditions to reduce vulnerabilities.
Irrigation was an important element of the Green Revolution; combined
with improved seeds, fertilizers, and pesticides. Asian countries espe-
cially witnessed impressive increases in agricultural productivity and
reductions in poverty (Alaofè et al., 2016). However, in light of climate
change, water cannot just be an input that is taken as given in agri-
culture. Water for agriculture will need to be better managed for it to
contribute to reductions in poverty and vulnerabilities. This manage-
ment will need to consider not just quantities of water, but the quality
of the water and the multiple agricultural (e.g. staples vs. cash crop)
and non-agricultural uses. For this reason, expanding research in WAP
needs to involve interdisciplinary efforts.

We suggest that there are good reasons for this apparent neglect that
center around conceptual issues (Section 2) & measurement issues
(Section 3). In Section 4, we discuss important and pressing knowledge
gaps that follow from the lack of attention paid to the WAP nexus.

2. Conceptual issues

Given the complexity of the natural and social sciences embedded in
the WAP nexus, an interdisciplinary approach is essential to better
understand how agricultural water management and use affect poverty.
While interdisciplinary approaches are also important for shedding
light on the links between other agricultural inputs (e.g. labor, land,
seeds, fertilizers and agrochemicals) and poverty, water is fundamen-
tally different in that it is a mobile resource that often moves freely
between properties over which people have claims, is difficult to
measure and control, and has many different uses (Meinzen-Dick, 2014;
Rogers, et al., 1998). Simultaneously achieving the Sustainable Devel-
opment Goals (SDGs) of “ensuring the availability and sustainable
management of water…for all,” of “promoting sustainable agriculture,”
and of “ending poverty in all its forms” (UN General Assembly, 2015)
will necessitate that irrigation engineers, hydrologists, economists, and
other social scientists among others work ever more closely together to
understand how these complex physical and social systems interact.

A number of conceptual issues, however, presents challenges to
interdisciplinary approaches to research on WAP, as well as to dis-
ciplinary research on this topic, especially for economists. To help us
focus ideas, it is helpful to recognize that agricultural water manage-
ment is fundamentally a complex multidimensional optimization pro-
blem that balances the biophysical supply of water with economic and
social demand for the resource. For practical purposes, however, var-
ious disciplines reduce it to a unidimensional optimization, and do not
always choose the same dimension, scale, and/or time frame. A con-
sequence of this is that natural scientists tend to focus on ways of op-
timizing the supply of water, while social scientists tend to think about
the demand side and how water is (optimally) allocated and used.
Because their entry points are different, various disciplines address
different components of the WAP nexus and concern themselves with
different objectives, some of which are not necessarily consistent with
poverty reduction.

We break these conceptual challenges down into (1) biophysical
issues and the related debates within and among irrigation engineers,
hydrologists, and economists about water use and ‘efficiency’; and (2)
economic issues and how assigning prices and allocating property rights
to a complex resource like agricultural water may affect how water
resources are managed, which in turn may affect social welfare and/or

poverty reduction objectives.

2.1. Conceptual challenges – biophysical issues

Although the focus of hydrologists and irrigation engineers is on the
broader supply of water, they tend to have limited agreement around
key conceptual issues because the “science of hydrology and the prac-
tice of irrigation have developed at different scales” (Perry, 2007). In
the practice of irrigation, for example, getting water to the crop is the
main objective, and hence the aim is to make sure that water diverted
from various sources is used to the greatest extent possible for crop
cultivation. Hydrologists, on the other hand, study stocks, flows, and
losses of water at larger landscape scales (such as a basin, country or
even world) over longer periods of time, with the objective of max-
imizing the availability of water for increasing numbers of agricultural
and non-agricultural uses.

The practical consequence for irrigation engineers is that they de-
sign irrigation systems in order to maximize the ‘efficiency’ of agri-
cultural water use by minimizing the share of source-diverted water
that does not flow to crops. Of course, these designs depend on how
efficiency is conceptualized. The classic definition of irrigation effi-
ciency – the ratio of irrigated water consumed by the crop relative to
the water withdrawn from a source (Israelson, 1950) – has been mod-
ified over time to account for differing notions of water consumption
(e.g. evapotranspiration1 of water and the water necessary for main-
taining leaching to control soil salinity; Jensen (1967)) and to assess
losses in the conveyance (ratio of water delivered to the field relative to
water delivered to the distribution system) and application (ratio of
irrigation water consumed by the crop relative to the water delivered to
the field) of irrigated water. Further modifications address limitations
related to the denominator (water supplied) by accommodating for
return flows (i.e. irrigated water that flows back to drains and rivers
that can be reused downstream or as groundwater; see Bos and
Nugteren, 1974; Bos and Nugteren, 1982; Jensen, 1993; Willardson
et al., 1994; Allen et al., 1997; Willardson and Allen, 1998, Perry, 2007)
and for water quality (Keller and Keller, 1995). The take away from this
is that the many different definitions of irrigation efficiency reflect a
“widespread confusion in the literature about what constitutes ‘water
use’” in irrigation (Perry, 2007).

The implication of hydrologists’ focus on assuring water availability
at, say, the basin level is that they devise interventions that are in-
tended to decrease the extent to which natural runoff is diverted from
‘beneficial’ consumptive uses, and to reduce evaporation (which could
leave the basin). Thus, even in irrigated systems, reducing runoff and
evaporation are the primary entry points for hydrologists because they
are considered ‘non-beneficial’ uses of water or ‘losses’ (in conversation
with colleagues at the International Water Management Institute
(IWMI)). Keeping water at the center, hydrologists thus seek to max-
imize the availability of water, and sometimes seek to maximize the
uses of water.

The differing objectives of hydrologists and irrigation engineers can
conflict. For example, by using ‘efficient’ systems such as drip irriga-
tion, it is possible for farmers to reduce the volume of water that they
deliver to the field without sacrificing the amount of water consumed
by the crop. The resulting increase in ‘application efficiency’ may
however come at the expense of water availability at the basin level if
return flows are also reduced. Further, it is worth noting that none of
the irrigation efficiency concepts takes farmers’ decisions about crop
production into account, and hence efforts to achieve any of these forms

1 The process by which water is transferred from the land to the atmosphere
by evaporation from the soil and other surfaces and by transpiration from
plants. The former is viewed as a non-beneficial ‘use’ of water from the per-
spective of the river basin, while the latter is considered a beneficial use of
water for consumptive purposes.
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of efficiency do not necessarily imply good performance. For example,
if farmers supplied significantly less water to a field than the crop
would normally ‘consume’, then irrigation efficiency would be high, but
yields would be low (Hansen, 1960). In this context, one could argue
that the purpose of irrigation fails (Perry, 2007).

Recognizing that farm- and irrigation system-level efficiency mea-
sures may be inappropriate tools for basin-level water management and
planning, and that agriculture is the largest user of water resources
worldwide, Seckler (1996), an economist, proposed a measure of
‘agricultural water productivity’ (amount or value of crop production
per unit of water applied or transpired) in an effort to identify ways to
achieve ‘real’ efficiency gains and ‘real’ water saving at various levels
(Giordano, et al., 2017). The idea is that increasing water productivity,
or getting ‘more crop per drop’ by growing more food with the same
amount of water or less (Moulden, 1997), can help to alleviate water
scarcity, achieve food security, and reduce strains on the environment
(Rijsberman and Molden, 2001). Analyses that focus on maximizing
water productivity, especially in arid and rainfed areas (e.g.
Amarasinghe and Smakhtin, 2014) have featured prominently in the
hydrology and water management literature despite recognized lim-
itations of the approach (e.g. underplaying water quality, ignoring non-
crop water uses, and environmental uses; IWMI, 2004).

Perhaps the most compelling limitation of the emphasis on max-
imizing water productivity is that water productivity is just a single-
factor average productivity measure in a multi-factor and multi-output
production process (Barker et al., 2003). Indeed, there is no underlying
conceptual rationale for maximizing an average water product since
profit-maximizing farmers will make decisions at the margin, and will
simultaneously choose other inputs in order to achieve this objective
(i.e. by equating the marginal benefit and marginal cost of each input),
rather than to maximize how much crop can be produced per drop of
water (Wichelns, 2014). As Wichelns (2015) notes “simple ratios of
water productivity or water footprints contain too little information to
guide stakeholders in their deliberation of reallocation decisions.”
While recognition of this has helped to shift thinking from water pro-
ductivity as a “principle objective” to water productivity as an “entry
point” to understand limitations to water access and availability (Vidal
et al., 2014), the challenge remains that the economic principle of profit
maximization is difficult to apply to water management since the
marginal cost of water faced by farmers is often artificially low or even
zero (e.g. in surface irrigation systems and in groundwater systems
where electricity is subsidized). Thus, in the absence of practical al-
ternatives, considerable research efforts continue to focus on ways to
maximize water productivity as a single way to address the challenges
of climate variability.

2.2. Conceptual challenges – economic issues

While hydrologists and irrigation engineers concern themselves
with the water-agriculture link in the biophysical space, their emphasis
on the supply of water does not systematically address the link with
poverty, which is in the economic space. Given that maximizing water
productivity or availability for use does not imply that social welfare
(or even income) is necessarily maximized, much less that poverty is
minimized (Wichelns, 2015), it is not surprising that economists and
irrigation practitioners struggle to find common ground even when they
share a common underlying goal of improving the livelihoods of the
poor. Even within economics, different streams focus on different pieces
of the WAP nexus. For example, agricultural and development econo-
mists2 often relegate water to a given input, and focus on topics related
to the agriculture-poverty link. Environmental and resource economists
doing research in developing countries, on the other hand, focus on the

water-agriculture link (returns to agriculture under alternative water
management regimes).3

2.2.1. Water prices
One challenge to interdisciplinary work on WAP is that economists,

engineers, and other social scientists are far from agreement on the
central role of agricultural water prices because they conceptualize
them in different ways (Tsur, 2005). For the economist focusing on the
demand side, the main concern is achieving efficient allocations of
currently available water (in both irrigation schemes and farmer-led
irrigation4), which are characterized by the marginal benefits of the last
units of water used for particular purposes being equal to the marginal
economic cost of that water. In competitive markets, prices serve to
equate the marginal benefits and marginal costs. In the absence of
water markets, however, achieving efficiency requires some sort of
deliberate marginal-cost pricing to reflect scarcity values so that water
may be allocated to the most economically valuable uses5 (Dinar and
Subramanian, 1998; Tsur et al., 2004).

For the irrigation engineer, a major concern with irrigation schemes
is often cost recovery in order to sustain the supply of irrigation ser-
vices. This requires incorporating fixed (design, construction) and
variable costs (system operation and maintenance costs, service costs,
depreciation) into water prices (Abu-Zeid, 2001; Barakat, 2002; Molle,
2009). Consequently, rather than representing marginal economic
costs, such prices represent average delivery costs (Dinar and Mody,
2004), and are unlikely to result in efficient allocations within the
schemes (Tsur et al., 2002). Paradoxically, irrigation engineers are si-
lent on the cost-recovery of subsidies provided for purchasing pumps
and equipment in farmer-led irrigation. Moreover, it is not clear that
farmer-led irrigation approaches are universally equity- and justice-
enhancing since the jury is out on whether poor smallholders are able to
access irrigation as easily as better-off farmers can (Lefore et al., 2019).

For other social scientists concerned more with equity and justice
objectives of irrigation schemes, progressive block price systems may
have an appeal. The idea is that by charging higher volumetric prices
for larger users (in higher blocks), a minimum quantity of water can be
provided at lower prices (in lower blocks) to households that use small
amounts of water. These latter are commonly assumed to be the poorest
households. The success of these systems, however, depends on the
strength of the relationship between income and water use. While less is
understood with regard to demand for irrigation water in the devel-
oping world, there is some evidence that although this relation is po-
sitive for domestic water in developed countries, it is weak (e.g. see
Nauges and Whittington, 2017). In other words, the distinction that
small water users are poor and that large water users are rich is not
strong. Nonetheless, Klaiber et al. (2010) do find that demand for re-
sidential water is more inelastic for larger users than for small users,
indicating that price differences affect small users more than large
users. While this evidence is suggestive that block pricing may not be an
effective means of targeting low income households, more research in
developing countries is needed to understand the potential for

2 Development economics focuses on many topics beyond agriculture, where
water may be a unit of inquiry, but this article only focuses on agriculture.

3 Environmental economics also focuses on water-poverty linkages, in the
context of water, sanitation and health. This, however, is not a linkage with
agriculture.

4 Farmer-led irrigation typically implies farmers irrigating using groundwater
tapped through private wells/tubewells. It is not uncommon for governments to
promote farmer-led irrigation by providing subsidies for well drilling, pumps,
and equipment. Farmers are then responsible for supplying water from their
private wells to their fields.

5 This requires information on opportunity costs and values of water in al-
ternative uses (de Azevedo & Balter, 2005). When they are involved, ex-
ternalities should also be included in the cost (Dinar and Mody, 2004). Theo-
retically, this suggests that the price of water would vary by crop, water quality,
and season, among other factors (Tsur, 2005). This is an arduous, complex and
demanding task that is rarely feasible from a practical perspective.
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irrigation water block pricing to achieve equity objectives there. Fur-
ther, pervasive fragmentation of land holdings and extensive tenancy in
the developing world may render the levying of asset (land)-based
progressive pricing challenging. Finally, such systems may come at the
expense of both cost-recovery, particularly in countries where there are
many poor smallholders (Ruijs et al., 2008), and efficiency (see Boland
and Whittington, 2000 for results pertaining to residential water in
developing countries; as discussed below, it is not obvious if prices will
indeed lead to efficiency-enhancing outcomes, and whether second-best
objectives such as cost recovery and fees for accessing a resource may
be more desirable).

While economists may agree on the allocative role of water prices,
and that these prices need to be deliberately set by authorities to reflect
scarcity values in the absence of well-functioning markets, there is not
one preferred way to go about setting them in practice. The various
methods include volumetric (which measures water consumed),
output/input (a fee is paid on each unit of input used or output pro-
duced), and area pricing (depending on crop type, season, irrigation
method, etc.); block rates (type of volumetric pricing); and two-part
tariffs (which includes a fixed charge) (see Tsur and Dinar, 1997).
Which methods are preferred on efficiency grounds are likely to depend
on their respective implementation and monitoring costs (Tsur, 2000;
Iglesias and Blanco, 2008), and on political feasibilities. Unfortunately,
there are no robust methodologies for evaluating the effects that these
implementation costs have on allocative efficiency (Iglesias and Blanco,
2008; Johansson et al., 2002). Consequently, it is not obvious whether
implementing volumetric pricing would indeed lead to an efficiency-
improving outcome if the real implementation costs are very high.

With growing concerns over water scarcity and falling groundwater
levels in the presence of climate change and population growth, irri-
gation experts of all stripes tend to recognize that prices may be an
appropriate tool for water demand-management. Indeed, one com-
monly cited goal for prices is to reduce agricultural water use (or to
improve conservation). Microeconomics informs us that the success of
this will depend on the price elasticity of demand, which is often low
(Dinar and Mody, 2004; Gómez-Limón and Riesgo, 2004; Varela-Ortega
et al., 1998; Gómez-Limón and Berbel, 1999; Feijoó et al., 2000). This
means that demand for water is not very sensitive to price changes in
the short term, and that water prices may in fact have a limited role in
reducing water use. Moreover, increases in water prices may actually
increase the total demand for water in the long term (Massarutto, 2002;
Dinar and Zilberman, 1991). The reason for this is that while higher
water prices may encourage farmers to use less water on their current
plots and crops (intensive margin), the more efficient irrigation
methods that they adopt (e.g. drip irrigation over sprinkler systems)
may also give them incentives to increase their cultivated area and/or
shift to more high-value water-intensive crops (extensive margin)
(Massarutto, 2002; Dinar and Zilberman, 1991). Further, adjusting
prices may not be effective means of reducing water use in climatic
situations where water supplies are reduced temporarily (e.g. droughts)
(Mejias et al., 2004; Salman et al., 2002). In short, prices may not be an
effective water-management tool on their own. Reducing agricultural
water use in response to climate variability and/or persistent water
stress may require a system of quotas along with water prices (Molle,
2009; Dinar and Mody, 2004; Perry 2001). Further research on com-
binations of quotas and/or water prices will be necessary to determine
appropriate context-specific approaches that achieve reduced-agri-
cultural-water-use objectives as well as equity and justice (e.g. poverty
reduction) objectives.

Water prices may, however, have a role to play in allocating water
to more efficient uses, which may in turn attenuate the impacts of cli-
mate change on GDP. Based on global macroeconomic models of the
status quo, The World Bank (2016) estimates that water-related climate
damages will be 0.5% of global GDP in 2050, and that a dispropor-
tionate share of this burden will be concentrated in the developing
world. They also find that allocating water to more efficient uses

(mostly through pricing) could eliminate these damages globally, and
might even lead to regional gains. Since irrigation is one of the largest
uses of water in the world, such pricing would have to encompass the
agricultural sector. The challenge here, however, is the gap in our un-
derstanding of how these dynamic global models and findings corre-
spond with micro-level behaviors and gains.

2.2.2. Water rights
While the importance of secure property rights in sustainable nat-

ural resource management is increasingly becoming recognized
(Deininger, 2003; Meinzen-Dick, 2014), differing understandings of the
role of water rights complicate policy reforms in practice. Irrigation
experts, for example, primarily conceptualize water rights as a method
for allocating water and delivering services. Their focus is on the
technical and institutional feasibility of allocating rights, and hence
water delivery (e.g. see Lewis and Zheng, 2019; Hoogesteger and
Wester, 2017; Zwarteveen, 1997). Economists, in their focus on effi-
ciency, consider water rights to be important for more than just se-
curing access to water as irrigation experts do. To them, water rights
are also necessary for efficiency enhancing trade, and can also be an
important mechanism for resolving the collective action problems (e.g.
over-extraction) associated with managing common-pool resources
characterized by costly exclusion and rivalrous consumption. For the
former, water rights need to be tradable (Rosegrant and Binswanger,
1994). Moreover, in order for such transactions to take place, land and
water rights must be separable (one can sell her water while keeping
her land), the social benefits generated from the trade must be greater
than the transaction costs, and water use needs to be metered
(Michelson and Young, 1993; Rosegrant and Binswanger, 1994; Lewis
and Zheng, 2019). For the latter, assigning water rights can change the
structure of the collective-action problem (Hanna, 2003; Ostrom, 2003)
by providing incentives for careful management. Their ability to do so
however depends on the strength of the institutions that enforce them
and the degree to which they are understood (Meinzen-Dick, 2014).
Four of Ostrom’s (1990) design principles for governance of irrigation
systems are particularly relevant here: clearly defined boundaries,
monitoring, graduated sanctions, and conflict resolution mechanisms
(Meinzen-Dick, 2014). In the more information-rich environment of
surface irrigators, where observation and experimentation allow irri-
gators to monitor other irrigators practices and to understand the
boundaries, capacity and variability of the system, irrigators are more
likely to develop local norms and rights for water management
(Schlager, 2007; Uphoff, 1986, 1992). Establishing water rights among
individual small-scale users of groundwater is more challenging how-
ever as irrigators are not likely to understand the boundaries, capacity
and variability of the “invisible resource” that they extract, nor observe
the practices of other irrigators (Schlager, 2007; Rose et al., 2002). In
contrast to irrigation experts and economists, other social scientists
regard water rights as a way of empowering individuals, especially the
poor and vulnerable, and focus on equity as an important consideration
for sound water resource management (Molle, 2004; Zwarteveen, 1997;
Zwarteveen and Meinzen-Dick, 2001).

A central question is whether tradable water rights and markets for
water do in fact lead to more efficient allocations of water through
trade. A series of studies in the economics literature poses this very
question by examining tradable water rights in developed (United
States and Australia) and developing countries (China, Chile and
Mexico) and focusing on whether there have been improvements in
intra-agricultural and inter-sectoral allocative efficiency in the presence
of transaction costs. The findings are mixed (see Bauer, 1997;
Michelson and Young, 1993; Grafton et al., 2011; Grafton et al., 2012;
Colby, 1990; Garrick and Aylward, 2012; Young et al, 2009). The
reason for this could be that water rights in these countries were in-
itially allocated in such a way that they were already efficient. That is,
there were few gains to be had from trade, and hence little opportunity
to make efficiency-enhancing trades. It is more likely however that the
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potential social benefits generated from water trades tended to be
swamped by the transaction costs associated with them, and hence
trades that would have taken place in the absence of these transaction
costs did not in fact take place. Our understanding of this effect depends
in part on different considerations of what transaction costs are
(Garrick et al. 2013). Most studies have focused on static transaction
costs (e.g. Archibald and Renwick, 1998; Lund, 1993; Ruml, 2005),
which are those costs associated with search, negotiation, etc. within a
given institutional structure. But there are also dynamic costs such as
institutional transition (moving from the current institution to a new
structure) and institutional intertemporal lock-in (characteristics of
current institutions that limit future flexibility, such as vested interests
of current water rights holders) costs that are associated with institu-
tional change (Marshall, 2005). It is worth noting that in an era in in-
creased weather variability due to climate change, these dynamic costs
are likely to grow if, for example, caps in cap-and-trade systems need to
frequently be adjusted due to changing expectations about rainfall. Less
attention has been paid to these dynamic costs (e.g. see McCann and
Easter, 2004; Garrick and Aylward, 2012), and the results from eva-
luations based on static costs alone may be very different as more in-
formation on dynamic costs is gleaned over time (Garrick et al., 2013;
Carey and Sunding, 2001). The upshot is that if the first-best efficiency
goals attached to water markets and allocation reforms are hindered
due to transaction costs, then other second-best objectives (e.g. equity,
sustainability, etc.) may be more appropriate as policy priorities. Of
course, the presence of high transaction costs may also hinder the at-
tainment of these objectives as well. In addition, if smallholder farmers
have to spend a lot of time accessing irrigation water, then they may be
unable to participate in social protection programs such as work-for-
food, etc.

Efficiency, equity and sustainability are important objectives for
poverty alleviation. Yet, there are two major knowledge gaps in the
water rights literature related to these linkages. The first is the linkage
between water rights in agriculture and poverty. Even those studies that
examine irrigation markets in China, Mexico and Chile do not address
the distributional effects of water rights (e.g. see Bauer, 1997; Grafton
et al., 2012; Hoogesteger and Wester, 2017; Rosegrant and Schleyer
1996; Schleyer and Rosegrant, 1996). Since transaction costs, especially
the institutional transitional costs associated with policy reform, are
likely to be higher in developing countries, understanding the welfare
effects for farmers with tradable rights and for third-parties who may
not hold rights (Grafton et al., 2012) is important for understanding
whether water rights in agriculture can be a poverty-alleviation in-
strument. The second is that the focus of the water rights literature on
water access and availability has come at the expense of rights to water
quality. This is an important shortcoming considering how water
quality links to health and poverty in complex ways (see Rohr et al.
2019 for a comprehensive review of the linkages between infectious
disease and food production).

3. Measurement issues

Conceptual issues aside, challenges in measuring agricultural water
use and quality in developing countries create obstacles to collecting
the type of data needed for economic empirical analyses of the WAP
nexus.6 It is complicated enough to accurately measure land area/
quality and agricultural production, and hence yields (Desiere and
Jolliffe, 2017; Gourlay et al., 2017; Bevis and Barrett, 2020). It is even
more difficult to measure the quantity and quality of agricultural water
use given that water is a mobile resource, and as discussed in the pre-
vious section, there is no single agreed-upon definition of what con-
stitutes “water use” in agriculture. Assuming that “water use” is defined

as the quantity of water applied on a field or plot, part of the problem is
that the most reliable way of measuring such agricultural water use –
water meters attached to irrigation pumps – is costly and fraught with
practical problems (e.g. non-agricultural uses of extracted water, meter
tampering, etc.). It is not surprising then that whether farmers in de-
veloping countries receive their water from irrigation schemes or from
individual wells, water pumps are rarely metered; and when they are,
the meters typically record electricity use, a noisy measure for water
abstraction, much less water used for agricultural purposes given the
multiple uses of water (van Koppen, et al., 2006).

The consequence of this measurement challenge is that farm- and
plot-level survey data typically employed by agricultural economists
are generally not appropriate for addressing questions about the links
between water use, agriculture and welfare outcomes. For example, we
reviewed the household surveys conducted under the Living Standards
Measurement Study - Integrated Surveys in Agriculture (LSMS-ISA)
project, and found that agricultural water-related questions posed of
farmers are few and far between. In most cases, farmers are only asked
if their particular fields are irrigated, and if so, what that source of the
water is. Given the care that the LSMS team dedicates to accurately
measuring agricultural land, production, and other inputs, and given
that the primary objective of the LSMS-ISA project is to “foster in-
novation and efficiency in statistical research on the links between
agriculture and poverty reduction” in Sub-Saharan Africa (World Bank,
2019), the absence of more detailed measures of agricultural water use
suggests that the measurement costs and practical challenges are pro-
hibitively high for the LSMS team to consider this particular link be-
tween agriculture and poverty.

Alternative sources of data on agricultural water use are promising,
but come with their own challenges. One particular source worth
considering is remote sensing data. While economists are increasingly
taking advantage of the wealth of satellite data available, economic
analyses using water-related satellite measures other than rainfall (ty-
pically to measure shocks) are rare. In their comprehensive overview of
applications using satellite data in economics (e.g. remotely sensed
measures of agricultural land, crop choices, and natural resources such
as forest cover, logging, and beaches), Donaldson and Storeygard
(2016) have little to report on economic analyses of agricultural pro-
duction using satellite measures of agricultural water use given to the
paucity of such analyses. Nonetheless, spatially and temporally dis-
tributed estimates of evapotranspiration (ET) may hold promise as es-
timates of irrigation water use for economic analysis (Anderson, et al.,
2012). Users must keep in mind, however, that since the smallest re-
solution for these data is currently a 1 km-by-1 km pixel, the unit of
analysis for any study of water and agriculture in developing countries
will likely need to be larger than the size of the farm. While this means
that standard plot- and farm-level analyses may not be possible, it may
also encourage agricultural economists to think at a more aggregate
level that is in line with the boundaries of the water sources themselves
(e.g. aquifers or basins), which are also the units of analysis for stan-
dard hydrological and resource economic studies. Further, high-re-
solution remote-sensing ET data are themselves noisy estimates of
water applied to fields since they are better viewed as estimates of
water consumed by crops, rather than water applied to fields as an
input into the agricultural production process. To illustrate this point,
consider a farmer who over-irrigates her plots to the extent that the
water seeps below the root level and neither evaporates nor transpires.
In this example, since not all of the water applied to the field is captured
by ET measures, ET will underestimate the amount of water used by the
farmer as an input.7 In addition, actual ET rates depend not only on

6 These difficulties also hinder the setting of water prices and the allocation of
water use rights.

7 This raises the specter that non-classical measurement error (NCME) is
likely prevalent in measures of water use/consumption whether they are col-
lected at the plot level or estimated by remote sensing. This can be particularly
problematic if this measurement error is correlated with NCME of the variable
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solar radiation, temperature, and relative humidity, but also on the
type, structure, age and health of plants grown.8 To the extent that
there is error in measuring any of these inputs, there will be error in
measuring ET. One particular challenge is establishing which crops are
grown on the fields in the pixels under consideration since ET is dif-
ferent for different crops on the same fields under the same conditions.
This is especially problematic in areas where farmers practice inter-
cropping. More recent efforts to measure the timing and amount of ir-
rigation by using optical and thermal Landsat-7/8 data have proven
accurate at the time scale of an agricultural season, but less so for
periods of two weeks or less (Olivera-Guerra, et al., 2020). With the
planned launching of the Thermal infraRed Imaging Satellite for High-
resolution Natural resource Assessment (TRISHNA) mission in 2025,
however, the availability of more frequently visited high-spatial re-
solution thermal data should improve the accuracy of these data, and
could prove useful for research on WAP.

Another potential alternative source of data on agricultural water
use can be collected by partnering with irrigation pump providers that
attach meters to their pumps and monitor them. IWMI is experimenting
with this approach by partnering with Futurepump Ltd. to develop a
Real-time East Africa live groundwater use database (REAL-GUD) using
the meters on the network of solar pumps that are sold and monitored
remotely by Futurepump in East Africa. In addition, as information
technologies become more accessible in developing countries, appli-
cations that use the Internet of Things (IoT) in agriculture are likely to
provide a wealth of data on agricultural water use and quality. Loosely
defined as internet-enabled communications between everyday objects,
IoT creates opportunities for farmers in developing countries to adopt
data-driven smart agricultural practices. Through IoT, sensors with
wireless capabilities can be deployed on farms (e.g. in the ground and in
water sources) to collect data that is stored in cloud systems or servers
and made accessible to farmers by means of the internet or mobile
phones. Partnering with irrigation pump providers who provide IoT
services to farmers in developing countries9 holds promise for analyzing
the WAP linkages if carefully designed household surveys can be linked
to these data.

Aside from the interest in the demand for and use of water, there are
fundamental challenges in measuring the supply of water as well.
Calculating ‘stocks’ and flows of surface or groundwater at a point in
time is complex, especially given increasing weather variability due to
climate change. Satellite data from the Gravity Recovery and Climate
Experiment (GRACE) and the GRACE Follow On missions have proven
promising by measuring gravity anomalies that can be attributed to
surface and groundwater. The low resolution of these data (four degrees
by four degrees), however, limits their usefulness for micro-level re-
search on agricultural water availability. Given measurement issues on
both the demand and supply side, it is no wonder that it is challenging

to identify sustainable extraction use rates and paths.

4. Knowledge gaps

Understanding the role of water in agriculture and poverty is im-
portant, especially if irrigation reduces risks faced by farmers. Against
the backdrop of climate change, water cannot just be an input that is
taken as given in agriculture. Water for agriculture will need to be
better managed for it to contribute to reductions in poverty and vul-
nerabilities. This management will need to consider not just quantities
of water, but the quality of the water and the multiple agricultural (e.g.
staples vs. cash crop) and non-agricultural uses. For this reason, ex-
panding research in WAP needs to involve interdisciplinary efforts. We
identify three key knowledge gaps in WAP that are particularly pressing
in light of greater climatic variability. These are climate-change adap-
tation, over-abstraction of groundwater, and water quality.

First, the economic and human impacts of climate change on water
resources are likely to be large (Hoanh et al., 2015). In the absence of
adaptation measures, the effect of climate change on water resources is
likely to result in lower national incomes in low- and middle-income
countries (World Bank, 2016) and to exacerbate existing inequalities
(Global Commission on Adaptation, 2019). Better-managed irrigation
can be an important climate-change adaptation strategy in agriculture
that supports improvements in yields and provides other benefits
(Porter et al., 2014). Much of the analysis on adaptive measures,
however, has focused on publicly-funded water-related infrastructure
projects (World Bank, 2017). Less is understood about how adaptations
in water management and autonomous responses at the micro-level,
such as by farmers, take place (Jiménez Cisneros et al., 2014); and
whether such measures improve reliable access to water, boost agri-
cultural production, and reduce poverty. These measures include farm-
level investments in efficient irrigation technologies, deficit irrigation,
water harvesting, minimum tillage, and improved water delivery sys-
tems (Verchot et al. 2007, Luo et al., 2009, Piao et al. 2010). Rough
estimates from global climate models suggest that GDP losses could be
as much as a third greater in the absence of autonomous adaptation
(ECONADAPT, 2015). Understanding the micro-level adaptive re-
sponses of farmers to climate change is important for ensuring that
publicly planned adaptation investments have broader impacts (UNEP,
2018).

Second, although the over-abstraction of groundwater (when the
water taken from aquifers is greater than the recharge, and hence
groundwater levels fall) for agricultural purposes may be optimal for a
given location at any point in time10, it is likely that the rapid fall in
groundwater levels observed in many regions is socially sub-optimal
(e.g. ~1 m per year in parts of Jordan (IWMI, 2019); see also Molle and
Closas, 2016; Villholth et al., 2016). Overexploitation of this nature
follows from the challenges associated with managing this “invisible”
common-pool resource as discussed in Section 2. While adopting water-
saving technologies may be a necessary condition for reducing water
use in agriculture, it is not a sufficient condition. Indeed, the use of
more efficient irrigation equipment (e.g. drip irrigation) can lead to
more water use as farmers increase their cultivated areas and/or shift to
more high-value water-intensive crops (Massarutto, 2002; Dinar and
Zilberman, 1991). The upshot is that in order to reduce the over-
exploitation of groundwater, pumping and water-use behaviors in many
regions will need to change. This raises a number of open questions that
need to be addressed. For example, can nudges (Duflo et al., 2011) help
to “correct” agricultural water-use behaviors, and if so, how large will
the impacts be, and what will the distributional effects be? What role
might quotas and tradable water rights play, and under what conditions

(footnote continued)
on the other side of the regression since the sign of the bias is ambiguous in this
case. Abay et al. (2019) find that correcting just one of the sources of NCME can
aggravate the bias in the estimator, however, and suggest that a second best
approach of estimates based on multiple NCME may be preferable from a re-
duced-bias perspective.

8 To further complicate matters, water applied to fields that is actually con-
sumed by plants also depends on soil quality and its holding and drainage ca-
pacity. Efforts to account for soil color, moisture content, organic matter, and
texture have been developed in order to more accurately measure albedo (He,
et al., 2019) and hence evapotranspiration. Nonetheless there remain chal-
lenges to collecting high quality data on soils that can be used to accurately
measure agricultural water consumption.

9 Recognizing the potential for IoT in agriculture in developing countries, The
World Bank sponsored a series of webinars “to highlight the innovation, busi-
ness models, and demonstration of results on the ground for applying IoT in
Agriculture” (https://olc.worldbank.org/content/internet-things-iot-
agriculture-webinar-series).

10 An optimal steady state level, where the rate of abstraction is equal to the
rate of recharge, may be below the initial level. Thus, it may be optimal to over-
abstract groundwater until the steady state level is reached (Jacoby, 2017).
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might they be viable and effective at reducing water use, while also
achieving poverty reduction objectives?

Rapidly declining costs of solar power generation are creating op-
portunities for small-scale farmers to either switch energy sources for
pumping or to adopt groundwater irrigation for the first time.
Combined with recent studies suggesting that there is plentiful
groundwater in much of sub-Saharan Africa (You, et al., 2011;
Schmitter, et al., 2018; Worqul, et al., 2017), this has led to a big push
for expanding smallholder irrigation there using off-grid solar power.
While there is some evidence that distributed irrigations systems such
as these can significantly raise agricultural production, increase food
security and reduce poverty among smallholder farmers (Burney and
Naylor, 2012; Burney et al., 2013), the longer-term hydrological effects
of a large uptake are not well understood. Interdisciplinary research
will be crucial for understanding the conditions under which well
drilling should be encouraged or discouraged, and where there are risks
of over-abstraction. In regions such as South Asia where many farmers
are connected to the grid and use subsidized electricity to pump water
for irrigation and for sale to their neighbors, the effect of switching to
solar powered pumps on water use and availability in water markets is
not obvious. It is possible that providing farmers with opportunities to
sell power back to the grid may not reduce water abstraction, and could
lead to higher prices in secondary water markets, thus adversely af-
fecting poorer households. This needs to be better understood before
such policies are considered elsewhere.

Third, an important gap in the WAP literature is the question of how
agricultural practices combined with agricultural water use and man-
agement affect water quality, and how this quality is explicitly linked to
health and poverty outcomes. On the one hand, agricultural practices
may affect water quality. For example, while agrochemical use may
increase yields in smallholder systems, thus contributing to improve-
ments in incomes and nutrition inputs, it may also affect water quality
through runoff (Mateo-Sagasta et al. 2018; WWAP, 2017), thus com-
promising health outcomes over time through both infectious and non-
infectious diseases (Lai, 2017; Ringler et al. 2018; Rohr et al., 2015;
Sheahan and Barrett, 2017; Teklu et al., 2018). On the other hand,
water quality may affect agriculture. For example, arsenic-con-
taminated water used for irrigation tends to accumulate in produce,
especially rice (Rahman and Hasegawa, 2011), which can negatively
affect cognitive functioning among those who consume it, and thus
affect future earnings (Wasserman et al. 2004 demonstrated this for
arsenic-contaminated drinking water). Farmers may find that the
higher nutrient loads in untreated greywater used in agriculture can
increase their yields, but this water source also poses severe health risks
that include microbial diseases and toxicity (Dreschel and Evans, 2010;
Evans et al. 2019; Gross et al. 2005; Malchi et al. 2014; Srinivasan and
Reddy, 2009; Xie and Ringler, 2017; Yang et al. 2006). The expansion
of dams and irrigated agriculture to support food production and im-
prove livelihoods is also likely to affect malaria and schistosomiasis
prevalence rates (Ijumba et al. 2002; Keiser et al. 2005; Kibert et al.
2010; Kibert et al., 2019; Steinmann et al. 2006; Yapi et al. 2005).
Quantifying these tradeoffs and the impacts of management strategies
that reduce these health risks is difficult due to feedback loops and
measurement challenges (Liu et al., 2017; Sheahan and Barrett, 2017),
but is important for informing policy.

In closing, despite the conceptual and measurement challenges that
we outline above, there is an ever-pressing need for natural and social
scientists to engage in collaborative research on WAP. The ability of the
most vulnerable segments of society to navigate the consequences of
climate change and population pressures depends on it and on informed
policies. Moreover availability of and access to clean water will be in-
strumental to achieving many of the SDGs, not just SDG 6 (“Clean
Water and Sanitation”). This research, however, will be costly and will
require long-term financial commitments of the donor community. As
such, this is not just a call to action to scholars, but is also a call to the
donors.
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