

# Innovation Lab for Small Scale Irrigation (ILSSI) Stakeholder Consultation Workshop Report: Tanzania

Identifying and prioritizing constraints and opportunities



Dar es Salaam, Tanzania 25<sup>th</sup> July 20



















## **Innovation Lab for Small Scale Irrigation**

#### **Table of Contents**

| 1 | Intro | oducti  | on and background                                                                                                      | 2  |
|---|-------|---------|------------------------------------------------------------------------------------------------------------------------|----|
| 2 | Obje  | ective  | s and planned outputs of the workshop                                                                                  | 3  |
| 3 |       |         | nts                                                                                                                    |    |
| 4 |       |         | proceedings                                                                                                            |    |
|   | 4.1   |         | ning                                                                                                                   |    |
|   | 4.2   |         | entations                                                                                                              |    |
|   | 4.3   | Plen    | ary discussion and comments and questions from participants                                                            | 5  |
|   | 4.4   | Grou    | ıp work                                                                                                                | 6  |
|   | 4.4.  |         | Group work assignment: prioritization of constraints                                                                   |    |
|   | 4.4.  | 2       | Results of group work                                                                                                  | 7  |
| 5 | Sigr  | nifican | ce of the workshop                                                                                                     | 9  |
| 6 | Ann   | ex 1:   | Workshop participant list                                                                                              | 10 |
| 7 | Ann   | ex 2:   | Workshop Agenda                                                                                                        | 12 |
| 8 | Ann   | ex 3:   | Presentation slides                                                                                                    | 13 |
|   |       |         | 4: Small-Scale Irrigation Technologies and Agricultural Water Management P                                             |    |
|   |       |         | n 5: Overview of Integrated Decision Support System (IDSS)                                                             |    |
|   |       |         | n 6: Candidate constraints from research experience and a preview of the corthod, based on Robit watershed in Ethiopia |    |
| 9 | Ann   | ex 4:   | Workshop evaluation                                                                                                    | 31 |

This Report is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the International Water Management Institute (IWMI) and the International Livestock Research Institute (ILRI) and do not necessarily reflect the views of USAID or the United States Government.

## 1 Introduction and background

The *Feed the Future Innovation Lab for Small-Scale Irrigation* (ILSSI) project aims to enhance food security, improve nutrition and reduce poverty. The project team is achieving this by developing and introducing promising, context appropriate, small-scale irrigation systems into food and agriculture production on small farms in Ghana, Ethiopia and Tanzania. The project is piloting and modelling high potential interventions in small-scale irrigation and irrigated fodder production through development, and use of, an *Integrated Decision Support System* (IDSS).

The project, funded by USAID, is led by Texas A&M University (TAMU) in collaboration with the International Water Management Institute (IWMI), International Livestock Research Institute (ILRI), International Food Policy Research Institute (IFPRI) and North Carolina A&T State University.

In Tanzania the project is also partnering with Sokoine University and the Tanzania Livestock Research Institute (TALIRI) - Mabuti. Strong engagement with research institutions and non-governmental organizations such as these, as well as with the government of Tanzania and other stakeholders active in the country, including farmers, is a key component of the project. The project, which runs from October 2013 – September 2018, is comprised of five major interrelated components:

- Assessment of promising small scale irrigation technologies
- Small-scale irrigation interventions in the field
- Stakeholder consultation at multiple levels of scale
- Engagement with national partners and farmers in order to conduct field studies
- Surveys of farming families in the area surrounding the field test sites
- Analysis of the production, environmental and economic consequences of small scale irrigation
  options, including but not limited to interventions in farmers' fields, using the Integrated Decision
  Support System (IDSS)

Capacity development and training at multiple levels of scale are also substantive elements of the project.

#### Background to this workshop

Consultation with national stakeholders, to assist in planning, implementation and validation of results, forms a key part of the activities of the ILSSI project. This approach to partnerships is an ongoing process conducted throughout the 5 year duration of the project in all three countries. In the first phase of the project, initial engagements at local, regional and national levels helped to identify and define the most promising small-scale irrigation (SSI) scenarios that, with the support of further research, could potentially lead to sustainable adoption and significant development impact.

Over the past two and a half years researchers, through a combination of field surveys, analysis and modelling, have generated a set of initial results that focus on high potential interventions in small-scale irrigation and irrigated fodder production. These results, and corresponding experiences in the field, have been used to identify a number of constraints that affect the adoption of these small-scale irrigation interventions (both those studied in the field and a broader set evaluated using models).

This one day participatory stakeholder workshop provided an invitation to national experts in Tanzania to share their knowledge and experience, and draw on the institutional interests and priorities they represent, in order to evaluate and prioritize the constraints that have been identified so far by the ILSSI research team. The workshop took place at the Protea Courtyard Hotel.

Through this stakeholder consultation and evaluation process the research team aimed to collaboratively prioritize a short-list of these constraints specific to Tanzania, as a guide for further analysis. It is anticipated that this in turn will result in concrete, context specific proposals emanating from the project to mitigate these constraints and so make the most of opportunities to scale out solutions. The Integrated Decision Support System (IDSS) will be used in this analysis for each of the three countries of the study. A representative of the ILSSI External Advisory Committee, Permanent Secretary Mbogo Futakamba, was invited to provide perspectives, during the workshop, on the evolution of the project.

#### 2 Objectives and planned outputs of the workshop

The workshop had three key objectives, namely:

- To share research and experiences on small-scale irrigation and irrigated fodder interventions in Tanzania.
- To collaboratively prioritize the key constraints to successful and productive small-scale irrigation and irrigated fodder interventions in Ethiopia that the Integrated Decision Support System can help to address.
- To continue and expand participatory consultation with stakeholders to foster dialogue, networking and enhance partnerships.

The main planned workshop output was to produce a consensus based, prioritized list of constraints to successful and productive small-scale irrigation and irrigated fodder interventions in Tanzania, that the next phase of work with IDSS can focus on with a view to out-scaling small scale irrigation for transformative livelihood benefits in rural communities.

#### 3 Participants

Participants of this latest ILSSI project Stakeholder Consultation Workshop included representatives from relevant agencies of the Government of Tanzania, research and academia, non-governmental development organizations and donors active in Tanzania. Please see the full participant list in **Annex** 1 for further details.



ILSSI project Tanzania stakeholder workshop participants, Dar es Salaam, Photo: IITA

## 4 Workshop proceedings

In advance of the workshop, participants were provided with a set of background documents to review in order to further familiarise themselves with the project, its aims and approaches, the IDSS and most importantly the set of constraints, identified through the project that would be discussed and prioritized during the workshop. These documents included:

- An ILSSI project and IDSS background summary
- An example of the IDSS gap and constraints analysis for small scale irrigation systems developed by, and used in, the ILSSI project
- The rationale and agenda for this workshop

The workshop was split into two main sections (please see the workshop agenda in **Annex 2** for further details) providing opportunities to:

- Share the latest developments, findings and approaches of the ILSSI research project team through presentations from project partners.
- Discuss high potential interventions in small-scale irrigation and irrigated fodder production in Tanzania, and collaboratively work to prioritize a set of constraints to the adoption and success of these interventions that represent a synthesis of workshop participant expertise and those identified by the ILSSI project through field work, household surveys and the use of the Integrated Decision Support System (IDSS).

Following a morning of presentations from representatives of TAMU, IWMI, ILRI and IFPRI the second half of the workshop involved a group exercise to collaboratively prioritise the constraints to adoption of small scale irrigation interventions studied in Tanzania. These will then provide the focus for the next phase of work with IDSS with a view to out-scaling small scale irrigation for transformative livelihood benefits in rural communities in Tanzania, as well as in Ghana and Ethiopia.

#### 4.1 Opening

Ben Lukuyu, an animal nutritionist and Uganda country representative for ILRI welcomed participants to Tanzania. He encouraged cross-project collaboration during implementation of ILSSI in the production of irrigated fodder to overcome feed shortage in Tanzania. Lukuyu also called for sustainable intensification of mixed crops, health and nutrition to maximize benefits and minimize harms by working with various partners and the private sector.

The facilitator, Tsehay Gashaw a Knowledge Sharing and Web Communication Officer from ILRI, led the introduction exercise, where participants went outside and rotated in groups to know each other and share their expectations; there were three rounds, each lasting three minutes. Mrs. Gashaw then introduced the agenda and ground rules of the workshop.

#### 4.2 Presentations

Below is a brief summary of each of the presentations given by project partners. Please see **Annex 3** for further details and copies of the full presentation slide decks.

#### 1) Introduction to Feed the Future Innovation Lab for Small Scale Irrigation - Tanzania

Dr. Jennie Barron, Research Theme Leader for Sustainable Water at IWMI, presented a summary of the project's background, objectives, partners and the key research questions that the project aims to address. She noted that a conducive national policy environment in Tanzania continues to bring science into use. Dr. Barron also introduced the workshop objectives and its expected outcomes.

#### 2) Field level pilot interventions in small-scale irrigation and agricultural water management

Dr. Petra Schmitter, an agricultural water management specialist from IWMI presented the project sites, main activities and the intervention technologies for small scale irrigation in Tanzania. She presented the progress of work achieved together with the project partner Sokoine University of Agriculture. She presented on credit arrangements for pump sharing in Mkindo and Rudewa, the adoption of kitchen gardens for household nutrition and a feasibility study of pump irrigation for high value crops. She concluded her presentation with opportunities and constraints observed during the implementation of the project by farmers.

#### 3) Field Level Pilot Interventions in Small Scale: Fodder Cultivation

Dr. Ben Lukuyu presented the latest activities done in Morogoro and Manyara sites, fodder market studies and ex ante assessments carried out, plus the early findings and lessons learned. According to Dr. Lukuyu, the project identified knowledge gaps and trained farmers on advantages of irrigated fodder, and on producing, harvesting and managing forages. He added that a lot of work is currently ongoing e.g. trials in the project sites are led and observed by farmers, which has produced positive results.

## 4) Small-scale irrigation technologies and agricultural water management practices - analyzing nutrition, health and gender outcomes

Dr. Christopher Godlove presented the activities done by IFPRI, early findings, method of data analysis (e.g. WEAI- Women Empowerment in Agriculture Index), water lifting technologies and constraints and opportunities to promote gender equality in irrigation.

According to Dr. Godlove, IFPRI has conducted a series of gender-irrigation technical workshops to counter the constraints to adoption of irrigation by women. Dr. Godlove mentioned that most households use buckets, hose pipes and a few are using pumps. The major constraints noted were insect and animal damage, insufficient water and plant diseases. He added that non-irrigators are more food insecure compared irrigators.

#### 5) Overview of Integrated Decision Support System (IDSS)

Dr. Yihun Dile from Texas A&M University presented an analysis of the Kilosa watershed, where the project works in collaboration with Sokoine University of Agriculture. Three scenarios were compared (scenario 1: non-fertilized rainfed crops + irrigated vegetable crop, scenario 2: fertilized rainfed crops + irrigated vegetable crop and scenario 3: System of Rice Intensification (SRI) data was then analyzed using the IDSS.

Results of the modelling study include:

- Implementation of irrigation did not cause significant reduction on the average monthly stream flow
- Application of fertilizer increased the crop yield substantially and reduced soil loss
- The irrigation of vegetables use of fertilizer and practice of SRI was the most profitable scenario

## 6) Candidate constraints from research experience and a preview of the constraints analysis method

Dr. Yihun Dile then gave a presentation on the candidate constraints identified through the ILSSI project to date, and also on the methods used for constraints analysis. Dr. Dile used the example of research conducted into the Robit watershed of Ethiopia to show how the IDSS is used at the watershed scale to analyse resource and environmental constraints. He included a map of Ethiopia that's been produced showing land suitability for irrigation, details of available water in the Robit watershed, and the impacts of SSI at the watershed scale. He also showed how IDSS can be used to; analyse nutritional and economic constraints at the household level, examine field scale irrigation water management and investigate the impacts of fertilizer use on agricultural productivity.

#### 4.3 Plenary discussion and comments and questions from participants

A number of questions and comments were raised by participants after each presentation and at the end of the workshop's presentation session. These included:

#### Comments:

- Land tenure system is an issue in Tanzania and needs to be taken into consideration because people may hesitate to invest in proposed water lifting and irrigation technologies.
- We have to improve water use technologies e.g. in Kilosa. We are aiming at transferring knowledge obtained in other ILSSI sites e.g. Ethiopia with regards to irrigation scheduling and irrigated fodder (see FtF factsheet on irrigated fodder)
- Recent data on soil is available in the government ministry, consult and incorporate this in the modeling

#### Questions:

- Do you use gravity-fed water in irrigation? It depends on the site and the suitability for gravity fed irrigation. In the Tanzania case once water is lifted it is distributed gravitationally
- Is there surface water use? Yes all sites in Tanzania use surface water, in other ILSSI sites in Ghana and Ethiopia it is a combination of both
- This is an eye opener to the government especially now in dealing with conflicts over fodder access? Are there any water saving technologies?

- What irrigation is used for fodder, is it drip irrigation? It is a combination of pump irrigation and gravitational river diversion. We plan to help them purchase more pumps as irrigated fodder produces more than double the yield of rain fed fodder farming.
- What led to higher yields of the irrigated fodder by the project compared to yields of irrigated fodder outside the project? Cost Benefit Ratio (CBR) varies among farmers because of different practices.
- How much acreage did you consider in the household surveys? The maximum plot size is five acres.
- What is the household sample size and what do you mean by women empowerment? Our sample size is 451 households, women empowerment includes five domains: decision-making in production, access to productive resources, control over use of income, community leadership and time allocation.
- Out of 451 households how many are beneficiaries of the project? We have two villages, Mkindo and Rudewa which both have about 48 farmers.
- What are the disadvantages of irrigation? We just started last year in Tanzania, we are still collecting data and we will identify the constraints potential mitigations.
- What is the size of the watershed in Kilosa? We estimate it to be 1,500 ha but yet to confirm. All our primary data is from project partners and secondary data is from the Food and Agriculture Organization of the United Nations (FAO).
- By applying nitrogen on the farms, what are the effects of water quality? When you apply the right amount of fertilizer at the right time, it is not such a big challenge, especially in sub-Saharan Africa where fertilizer is applied on low scale.
- How do we communicate feedback on findings to farmers? These results are not strongly validated as we are thinking of how to share the Cost Benefit Ratio (CBR), but we work very closely with farmers and organize workshops to present translated results in local languages.
- Why is the slide on soil uniform? We got our data from FAO.
- Why did you use SWAT model analysis? It is a state-of-the-art model; it is well validated and used internationally.
- How did the model calculate such low figures, considering traditional farming of rice yields 2-4 tons/ha and this model shows irrigated yield is 4-5 tons/yield? This is an ex ante analysis, we appreciate your observation and we will improve with locally available data on yields, soils etc. to make sure results are relevant.
- What is the contribution and impact of fertilizer in the SRI? The way water is managed determines the yield. Increased use of fertilizer improves the yield.
- What variable contributed to the water lifting technology? Did you consider some assumptions in your probabilities? From our field experience labour is one of the factors as water lifting technologies are labour intensive; we assume there is market for the produce.

#### 4.4 Group work

#### 4.4.1 Group work assignment: prioritization of constraints

Workshop participants were divided at random into 4 groups of around 5-6 individuals. A member of the ILSSI project research team was assigned to each group. Each group was provided with a flipchart and paper, colored cards, pens and guidance on the group work process.

All four groups were then given forty minutes in which they were asked to:

- Consider from their knowledge and experience what they believe to be the key constraints to small-scale irrigation in Tanzania.
- Review the list of provisional constraints identified by the ILSSI project and see where the synergies/differences/gaps are (referring to the list of identified constraints on page 4 of project overview document if required)
- Discuss as a group and prioritize these constraints (based primarily on national considerations).
   Suggested criteria for prioritization include (but are not limited to) those with the:

- biggest positive development impact
- least negative environmental impact
- biggest potential for scaling up
- greatest opportunities to result in improved productivity and incomes
- Aim for group consensus on the top ten constraints (representing the most appropriate synergy
  of constraints from a) participant's experience and knowledge, and b) those already identified
  by the ILSSI project.
- Write the group's top 10 constraints on colour cards (individually) and stick them to the flip chart paper in two groups of five:
  - a) top priority
  - b) very important but secondary priority
- Choose a representative to present these findings back to all workshop participants in plenary.

The group work sparked energized discussions about what the key constraints to adoption of small-scale irrigation in Tanzania are, as group members made the case for constraints they felt should be in the top ten and subsequently in the top priority five, based on their expertise, experience and knowledge.

#### 4.4.2 Results of group work

#### Group 1

Group 1 chose to focus only on agreeing on the top priority 6 constraints.

#### **Top Priority**

- Climate change
- Tenure arrangements
- Finance modalities
- Capacity development
- Policy constraints
- Good extension and knowledge support

#### Group 2

#### Top Priority

- High initial costs of irrigation inputs
- Water availability and quality
- Accessibility to market is limited
- Inadequate knowledge
- Land tenure

#### Second Priority

- Source of energy
- Legislative requirements

#### Group 3

#### Top Priority:

Gender was identified as cross cutting in the following priorities:

- Climate and rain variability
- Agricultural Financing (credit, insurance)
- Access to inputs (e.g. seeds, fertilizer and low genetic potential for livestock) and land tenure
- Access to markets for selling produces
- Irrigation infrastructure and policies

#### Second Priority:

- Poor extension services (e.g. Irrigation and crop calendar knowledge)
- Mechanization
- Labour related to irrigation
- Cultural and social practices
- Operational costs

#### Group 4

Group 4 chose to focus only on agreeing on the top priority 6 constraints.

#### Top Priority

- Weak enforcement of regulation on water use
- Lack of awareness on irrigation technologies
- Use of non-appropriate data
- Inadequate attention on environmental issues
- Fodder technology (targets specific production systems)
- Land tenure and gender policy

Group 1 and 3 brainstormed on how the identified constraints could be turned into opportunities:

- 1) Climate change agenda provides a springboard to motivate water management for irrigation as well as potential investments
- 2) Policy (land, water tenure) water custodians gives opportunity for integration policies/development agenda
- 3) Land and ground water potential for irrigation
- 4) Food insecurity when moving from food crops to cash crops (e.g. male vs female irrigators)
- 5) Climate-smart agricultural technologies e.g. agroforestry
- 6) Link farmers to agro-dealers, existing local financial village banks (VICOBA), contract farming and improving infrastructure
- 7) Capacity in the country: more research on improved seeds and breeds according to the agroecological zones
- 8) Kitchen gardens to empower women to build upon existing projects related to empowerment

#### Consensus-based consolidated list of top priority constraints

After a representative from each of the four groups presented the group's findings (detailed above) to all workshop participants, the facilitator and one of the participants clustered the cards detailing the priority constraints from each group. The facilitator then led the group in consolidating the constraints. This was done by recognizing duplication, or constraints that were very similar, and thereby reducing the total number of top priority constraints to the categories detailed below.

#### The following constraints were identified as cross-cutting:

- Access to inputs e.g. fertilizer, labour, fuel
- Gender i.e. inter and intra-household activities for irrigation

#### 1. Capacity development and capacity development + irrigation expertise

- First degree hydrology graduates are too few
- Poor knowledge of farmers on irrigation technologies
- Land tenure and gender limits adoption in some technology i.e. fodder production
- Irrigation and crop calendar—optimizing cropping period and water needed
- Poor extension services due to a gap in knowledge and skills
- Lack of access to knowledge and information by irrigation technicians

#### 2. Finance modalities and access to electricity, solar and wind

- Community organized finance and micro-credit schemes
- High initial costs of irrigation inputs e.g. drilling, land acquisition and pumps

- Operational costs for repair and maintenance of pumps and scarcity of spare parts
- Labour demanding e.g. maintenance of canals, farrow, rain harvesting structures
- Affordability and availability of machinery to mechanize irrigation. e.g. pumps are difficult to use
- Agricultural financing e.g. credit, saving and insurance

#### 3. Policy constraints and market value chains

- Market functions of irrigation value chains
- Irrigation infrastructure and policies, e.g. by-laws for water abstraction and schemes are not finalized
- Legislative requirements
- · Land tenure is a disincentive to invest
- Farmers should form associations to market their produce
- There is limited accessibility to markets due to poor infrastructure

#### 4. Climate change/water and temperature variability

- Water availability and quality
- Extreme events i.e. drought and flooding

#### 5. Competing water uses (with other sectors)

- Weak enforcement of regulation on water use/regulations and inadequate staffing
- 6. For integrated irrigation gabion and nutrient efficiency, the soil needs micro and macro nutrients e.g. in SRI
- 7. Cultural and social practices related to stereotyping crops e.g. fodder, rice
- 8. Fodder technology is targeted to specific systems, either intensive or extensive system
- 9. Low genetic potential for livestock
- 10. Source of energy for water lifting and irrigation

Other notes related to project:

- The project should plan to scale-up to other areas
- Project should align with the national policy
- Ground water potential needs to be assessed
- Use of non-appropriate data as with IDSS (data sources)
- Inadequate attention to environmental issues in the project

## 5 Significance of the workshop

The stakeholder workshop in Dar es Salaam succeeded in bringing key national stakeholders together to; a) share research and experiences on small-scale irrigation and irrigated fodder interventions in Tanzania, b) foster dialogue, networking and enhance partnerships, and c) to collaboratively prioritize the key constraints to successful and productive small-scale irrigation and irrigated fodder interventions in Tanzania that the Integrated Decision Support System can help to address. The shortlist of constraints identified, discussed and prioritized represents participant consensus (based on local and national knowledge, experience and expertise) on those most appropriate for the next phase of work with the IDSS, with a view to out-scaling small scale irrigation for transformative livelihood benefits in rural communities in Tanzania.

## Innovation Lab for Small Scale Irrigation

## 6 Annex 1: Workshop participant list

| Na  | me                             | Job title                                       | Organization                                              | Contact                                                                       |
|-----|--------------------------------|-------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|
| 1.  | Amy Mchelle                    | Ag. Assistant<br>Director-<br>Research          | National Irrigation<br>Commission                         | amylabaa@gmail.com,<br>amymchelle@yahoo.co.uk<br>0714080244                   |
| 2.  | Praxeda Paul<br>Kalugendo      | Basin Water<br>Officer                          | Wami/Ruvu Basin-<br>Ministry of water                     | Praxeda.paul@maji.go.tz                                                       |
| 3.  | Jackson Nicholaus<br>Masakia   | District<br>Irrigation<br>Engineer-<br>Morogoro | Morogoro district                                         | jmasakia@yahoo.com,<br>masakiajackson@gmail.com<br>0785 395 370, 0762 855 469 |
| 4.  | Beverly Mcintyre               |                                                 | USAID/IWMI                                                | b.mcintyre@cgiar.org/bmcintyre<br>@usaid.gov                                  |
| 5.  | Tatu Mnimbo                    | Researcher                                      | Sokoine University of Agriculture                         | Maureen3mnimbo@gmail.com 0764 381371                                          |
| 6.  | Lucia Chacha                   | Principal<br>Livestock<br>Officer               | Ministry of<br>Agriculture,<br>Livestock and<br>Fisheries | Gaticha2006@yahoo.com 0752 157651                                             |
| 7.  | Mbogo Futakamba                | Permanent<br>Secretary                          | Ministry of Water and Irrigation                          | 0767 361574  Mfutakamba27@yahoo.com                                           |
| 8.  | Imani Nzobonaliba              | Senior<br>Engineer                              | National Irrigation<br>Commission-<br>Morogoro zone       | Naliba2002@yahoo.com<br>0757951977, 0713789365                                |
| 9.  | Martha Swamila                 | Natural<br>Resource<br>Economist                | ICRAF                                                     | m.swamila@cgiar.org<br>0713067774                                             |
| 10. | Angello Mwilawa                | Pasture and<br>Range Scientist                  | Tanzania Livestock<br>Research Institute                  | ajmwilawa@yahoo.com<br>0787892240                                             |
| 11. | Filbert Bartazar<br>Rwehumbiza | professor                                       | Sokoine University                                        | Rwehumbizaf2002@gmail.com<br>0784931818, 0789057419                           |
| 12. | Mateete Bekunda                | Chief Scientist                                 | Africa Rising-ESA project                                 | m.bekunda@cgiar.org<br>0682059802                                             |

| 13. Frederick Kahimba                 | Associate                                           | Sokoine University                                         | kahimbafcs@yahoo.com                 |
|---------------------------------------|-----------------------------------------------------|------------------------------------------------------------|--------------------------------------|
|                                       | Professor                                           | of Agriculture                                             | 0765173400                           |
| 14. Lyamongo<br>Tumanini<br>Lukanazya | Environmental<br>Officer                            | Wami/Ruvu Basin                                            | tlamomongo@gmail.com                 |
| 15. John Lwehabura                    | SIIL East Africa<br>Coordinator                     | CIAT                                                       | j.lwehabura@cgiar.org<br>0675449518  |
|                                       |                                                     |                                                            |                                      |
| 16. Humuri Haymale                    | Irrigation<br>Engineering                           | Nelson Mandela African Institute of Science and Technology | haymaleh@nm-aist.ac.tz<br>0782222136 |
| 17. Christopher                       | Lecturer                                            | Sokoine University                                         | Chris_magomba@yahoo.com              |
| Godlove Magomba                       |                                                     | of Agriculture                                             | 0788709709                           |
| 18. Rachel Zakayo                     | Research                                            | Gro-Future                                                 | rachelzaka@gmail.com                 |
|                                       | Assistant                                           |                                                            | 0785340880                           |
| 19. Petra Schmitter                   | Agricultural<br>Water<br>Management<br>Researcher   | IWMI                                                       | +251929037487 p.schmitta@cgiar.org   |
| 20. Ben Lukuyu                        | Scientist                                           | ILRI-Uganda                                                | +254722820758                        |
|                                       |                                                     |                                                            | b.lukuyu@cgiar.org                   |
| 21. Yihun Dile                        | Scientist                                           | Texas A&M                                                  | yihundile@tamu.edu                   |
| 22. Jennie Barron                     |                                                     | IWMI                                                       | j.barron@cgiar.org                   |
|                                       |                                                     |                                                            | +94776631632                         |
| 23. Mercy Becon                       | Communicatio n specialist                           | ILRI Tanzania                                              | m.becon@cgiar.org<br>0776000036      |
| 24. Tsehay Gashaw                     | Knowledge Sharing and Web Communicatio n specialist | ILRI Ethiopia                                              | t.gashaw@cgiar.org                   |

## 7 Annex 2: Workshop Agenda

| Time             | Duration   | Activity                                                                                                                   | Lead person                    |
|------------------|------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 8.30 -           |            | Registration                                                                                                               | •                              |
| 9.00             |            | ŭ                                                                                                                          |                                |
| 9.00 -           | 10 mins    | Welcome - recognize External Advisory Committee member for                                                                 | ILRI Head of Office (Tanzania) |
| 9.10             |            | Tanzania and government officials                                                                                          | Permanent Secretary Mbogo      |
|                  |            | Opening Comments                                                                                                           | Futakamba                      |
|                  |            |                                                                                                                            | - w.                           |
| 9.10 -           | 20 mins    | Participant introductions and icebreaker exercise                                                                          | Facilitator                    |
| 9.30<br>9.30 -   | 15 mins    | Presentation: Overview of the ILSSI project: objectives, partners and                                                      | Dr. Neville P Clarke,          |
| 9.30 -           | 13 111115  | activities - 10 mins; Q&A – 5 mins                                                                                         | Texas A & M University         |
| 9.45 -           | 15 mins    | Presentation: Field level pilot interventions in small-scale irrigation                                                    | Dr. Petra Schmitter, IWMI      |
| 10:00            | 10 1111110 | and agricultural water management (SSI/AWM) - 10 mins; Q&A – 5                                                             | Di. i cua commuci, ivvivii     |
| . 0.00           |            | mins                                                                                                                       |                                |
| 10:00 -          | 15 mins    | Presentation: Field level pilot irrigated fodder and integrating                                                           | Dr. Ben Lukuyu, ILRI           |
| 10.15            |            | livestock – 10 mins; Q&A - 5 mins                                                                                          | •                              |
| 10.15 -          | 15 mins    | Presentation: Household level surveys on impacts from SSI/AWM                                                              | Dr. Christopher Godlove        |
| 10.30            |            | (including gender and nutrition) – 10 mins; Q&A – 5 mins                                                                   | Magomba SUA representing       |
| 40.00            | 00 '       |                                                                                                                            | IFPRI                          |
| 10:30 –<br>11:00 | 30 mins    | Group photo followed by tea/coffee break                                                                                   |                                |
| 11:00 -          | 20 mins    | Presentation: Overview of Integrated Decision Support System                                                               | Dr. Yihun Dile,                |
| 11:20            | 20 111113  | (IDSS) -15 mins; Q&A - 5 mins                                                                                              | Texas A & M University         |
| 11:20 -          | 30 mins    | Presentation: Candidate constraints from research experience and a                                                         | Dr. Yihun Dile.                |
| 11:50            |            | preview of the constraints analysis methods - 20 mins; Q&A - 10                                                            | Texas A & M University         |
|                  |            | mins                                                                                                                       | ,                              |
| 11:50 –          | 40 mins    | Group work on preliminary constraints identified                                                                           | Facilitator                    |
| 12:30            |            |                                                                                                                            |                                |
|                  | Partio     | cipants divided into 4- 5 groups (depending on total number of participar<br>flipcharts, pens and cards in various colours | nts), supplied with            |
| 12:30 -          | 1 hour     | Lunch                                                                                                                      |                                |
| 1:30             | 45         | W.L. I. I. I. I. I.                                                                                                        | E 22.                          |
| 1:30 –<br>1:45   | 15         | Welcome back, review, icebreaker                                                                                           | Facilitator                    |
| 1.45 -           | 60 mins    | Group Work                                                                                                                 | Facilitator                    |
| 2:45             | 00 111113  | Prioritization of constraints to adoption (nationally) of small scale                                                      | 1 acilitator                   |
| 2.40             |            | irrigation interventions studied in Tanzania, for further analysis.                                                        |                                |
| 2:45 -           | 30 mins    | Group representatives present back to plenary                                                                              | Group reps / facilitator       |
| 3:15             |            |                                                                                                                            |                                |
| 3:15 -           | 30 mins    | Consolidate list of prioritized constraints, summarize group work                                                          | Facilitator /                  |
| 3.45             |            | outputs and describe how these will be used for the next steps of the                                                      | Dr. Yihun Dile, Texas A & M    |
|                  |            | project                                                                                                                    | University                     |
| 3:45 –<br>4:10   | 25 mins    | Coffee break                                                                                                               |                                |
| 4:25             | 15         | Next Steps                                                                                                                 | Dr. Neville Clarke,            |
|                  |            | ,                                                                                                                          | Texas A & M University         |
| 4:25 –           | 30 mins    | Closing remarks                                                                                                            | Permanent Secretary Mbogo      |
| 4:45             |            |                                                                                                                            | Futakamba                      |
|                  |            | Mary                                                                                                                       | Facilitator and Neville Clarke |
|                  |            | Wrap up                                                                                                                    |                                |
|                  |            |                                                                                                                            |                                |

#### 8 Annex 3: Presentation slides

#### Presentation 1: Introduction to Feed the Future Innovation Lab for Small-scale Irrigation





#### Methods

- · Assess recent innovations in SSI
- · Stakeholder engagement (iterative)
- · National partners for field research
- · Detailed experimental design
- · Ex ante assessment of consequences
- Environmental assessment
- Field studies
- · Ex post assessment and scaling out
- · Constraints analysis and mitigation
- Training



#### ..... FEED/FUTURE

#### COMPONENTS OF PROJECT

- Ongoing Stakeholder Engagement
- Assessment of natural resources
- Field Studies
- Household Surveys
- Integrated Modeling
- Synthesis and recommendations



# <u>Presentation 2: Field level pilot interventions in small-scale irrigation and agricultural water management (SSI/AWM)</u>









#### CONSTRAINTS IDENTIFIED









#### **FACTORS INFLUENCING ADOPTION**

#### Farm/farmer related factors:

- ☐ Perception of farmers regarding the potential of technology in increasing crop yield,
- ☐ Farmer's choice of crop with high water productivity and returns per drop,
- Gender of a decision maker in the household,
- ☐ Education
- Secured land tenure.



#### FACTORS INFLUENCING ADOPTION OF WATER USE TECHNOLOGIES

#### Technology-related

- ☐ Low initial capital investment
- Less labour requirement
- ☐ Locational suitability
- Simplicity of technical and design requirement.

#### Institutional factors

- Availability of credit to farmers,
- ☐ Extension services and
- ☐ Technical support.



#### FEED/FUTURE





#### KEY RECOMMENDATIONS

- Farmers should receive adequate training on how to operate, repair and maintain the Water lifting and water use technologies
- Develop and proactively enforce policies, regulations and by-laws to protect water use structures
- · Farmers must have access to credit tailored to their conditions
- The local government must devise strategic means of availing financial resources to in invest in water lifting and water use technologies.
- Strengthening the local water governance institutions such as WUAs is important for sustainable up-scaling of WUTs.









#### U.S. GOVERNMENT PARTNERS

























#### **FEEDIFUTURE**

#### Innovation Laboratory for Small Scale Irrigation: ILRI

Stakeholders Meeting Dar es Salaam, Tanzania. July 26 2016



#### FEEDIFUTURE

#### ILRI ACTIVITIES TO DATE

- · Stakeholder engagements
- · Community engagement
- · Rapid diagnosis Feed resource assessments (FEAST)
- · Field Level Pilot interventions
- · Preliminary Economic BCR and ex ante assessments



#### FIELD LEVEL PILOT INTERVENTIONS IN SMALL SCALE: FODDER CULTIVATION



#### MAIN ACTIVITIES

- · Testing irrigated fodder/forage cultivation to:
  - · Improve on farm meat and milk production for improved nutrition and income
  - · Evaluate fodder/forage production under irrigations systems
  - Employ fodder/forage cultivation to support diversification, intensification and sustainability



#### **FEEDIFUTURE**

#### MAIN ACTIVITIES

- · Technologies being tested and how
  - Testing of annual and perennial grasses and legumes for yield and fodder quality under different management
  - Fodder market studies for demand, price quality relationships and value chain characteristics
  - · Ex-ante assessments to predict impact of fodder



#### PARTNERS

Tanzania Livestock Research Institute, MABUKI

- · A regional agricultural research institute with a national forage research mandate
- · Partner with ILRI for implementation of ILSSI's irrigated fodder activities
- · Provide training to farmers and extension workers in the area of fodder establishment, management and
- · Partner with ILRI on fodder market studies



SITES

## Fodder trial activities were

conducted in

- Moragoro region
- · Mvomero district, Mkindo village
- · Kilosa district, Rudewa
- · Manyara region
  - · Babati district, Mawemairo and Gichameda



dong a field day at Rudewa Mbuwani fodder plot



| Villages           | Trial | Participating farmer |       |       |
|--------------------|-------|----------------------|-------|-------|
| Villages           | farms | Men                  | Women | Total |
| Rudewa-Mbuyuni     | 3     | 12                   | 9     | 21    |
| Mkindo             | 2     | 6                    | 4     | 8     |
| Mawemairo & Matula | 4     | 7                    | - 4   | 11    |
| Gichamada          | 2     | 6                    | 7     | 12    |



#### FEED FUTURE

#### EARLY FINDINGS AND LESSONS

- There is an abundance of natural pastures for feeding ruminants in the wet season for 2-3 months followed by severe pasture shortages in the dry season.
- Absence of planted forages to supplement feeding in the dry season especially with irrigation
- Knowledge gaps on proper forage production, feed conservation, storage, processing and utilization of livestock feeds.



- · Conducted farmer trainings on:
  - The importance of establishing irrigated forage and its implication on alleviating feed shortages

FARMER TRAINING

 Forage production, management, harvesting, conservation and or storage, processing and utilization.

The training was conducted by subject matter specialist form TALIRI, ILRI and extension service, A total of 57 were trained ahead of implementing the intervention.







#### **FEEDIFUTURE**

## NAPIER GRASS DRY MATTER YIELD AND QUALITY OBTAINED FOR A SINGLE CUT WITHIN ONE IRRIGATION CYCLE

| Napier<br>accession | Mean Yield<br>(Kg DM/ha) | Yield range (Kg<br>DM/ha) | SD  | Leaf: Stem<br>ratio |
|---------------------|--------------------------|---------------------------|-----|---------------------|
| ILRI 14984          | 6.2                      | 6-8                       | 0.6 | 0.9                 |
| ILRI 16803          | 6.3                      | 6-7                       | 0.4 | 0.7                 |
| ILRI 16835          | 11.3                     | 10-12                     | 1.0 | 0.4                 |
| ILRI 16837          | 14.8                     | 14-17                     | 1.1 | 0.7                 |
| Kakamega 2          | 16.6                     | 14-19                     | 1.3 | 0.6                 |
| Overall             | 12.1                     | 6-19                      | 4.3 | 0.6                 |









#### FODDER MARKETS

. To develop a systematic understanding of fodder markets and interactions among various players along the fodder value chain.




**FEEDIFUTURE** 















# **FEEDIFUTURE**

#### MAP OF TANZANIA SHOWING SITES OF THE STUDY





#### FEED FUTURE

#### PRELIMINARY FINDINGS: FODDER MARKETING

|                          | Availability (Month     | 6)    |                | Cost (Tah)       |                   |
|--------------------------|-------------------------|-------|----------------|------------------|-------------------|
| Fodder type              | Wet season Dry see      | ison  | Unit           | Wet<br>season    | Dry<br>seaso<br>n |
| Natural grass<br>mixture | Aug. Sept. Dec. J       | lan,  | Pickup         | 90,000           | 40,000            |
| Rhodes grass<br>(Hay)    | Jan, Feb, Mar Apr. N    | tay i | Bale           | 3,000            | 4,000             |
| Rice straw               | Nov. Dec (at harvest    | 5 1   | my             | 35,000           | -                 |
| Bean haulms              | July. Oct (at hervest   | ) 1   | Lony           | 900,000          |                   |
| Dry maize stover         | Aug. Sept. Oct (at harv | MST)  | Pickup<br>Acre | 30,000<br>20,000 | 40,000<br>55,000  |
| Napier grass             | Mar. Dec. Jan           |       | Acre<br>Load   | 50,000<br>1,500  | 70,000<br>3,000   |



FEED/FUTURE

INNOVATION LAB ON SMALL SCALE IRRIGATION

Farm level Cost-Benefit Analysis of Irrigated Forage Options: A case of farm households in Lemo, Ethiopia



#### STUDY APPROACH

- · Conducted at farm level
- · The analysis evaluated three farmer categories (irrigation options):
  - · Irrigated forage option
  - · Non-forage Irrigation option (current dominant use of
  - · The current dominant rain-fed production option





#### # FEED/FUTURE

#### STUDY APPROACH

#### Sampling

- · Data was collected from farmers households:
  - participating in impated forage trials (12 farmers irrigated forage)
  - + not participating in irrigated fodder trials but using irrigation (15 farm) Non-project irrigation farmers/current dominant use of irrigation)
  - + not using irrigation (16 farmers practicing pure rain-fed farming)
- . A census of all irrigated forage farm households (12)
- · A Systematic random sample drawn for 30 control households
- · Total sample size = 40 farm households



#### FEED/FUTURE

#### STUDY APPROACH

#### Assumptions and limitations

- . Small sample size limits the ability to make statistical inferences, consequently, a case study approach
- Due to estimation challenges, some costs and benefits were assumed to cut across all farmers/farmer categories. This include:
  - . Cost of free grazing land
  - + Value of water used for imigation
    - + focus on the value of crops produced from irrigation instead





#### STUDY APPROACH

#### Analysis

- · Estimated mean costs, benefits and investment values
- · Estimated mean benefit cost ratios (BCR) for the three farmer categories





#### # FEED:FUTURE

#### PRELIMINARY FINDINGS

- · Non-irrigating farmers (rainfed)
  - Incurred no costs of investing in irrigation pumps
  - Had the highest mean BCR
- · Imigated fodder farmers
  - · incurred comparatively higher costs labor costs, particularly on livestock and crops (spend comparatively more (70% of all costs) on labor compared to the other two farmer categories)
  - · received lower revenues compared to non-project irrigating farmers
  - Had the lowest mean BCR due to high labour expenditure





#### **FEEDIFUTURE**



Figure 1: Individual Households' Senetit cost ratios





#### U.S. GOVERNMENT PARTNERS























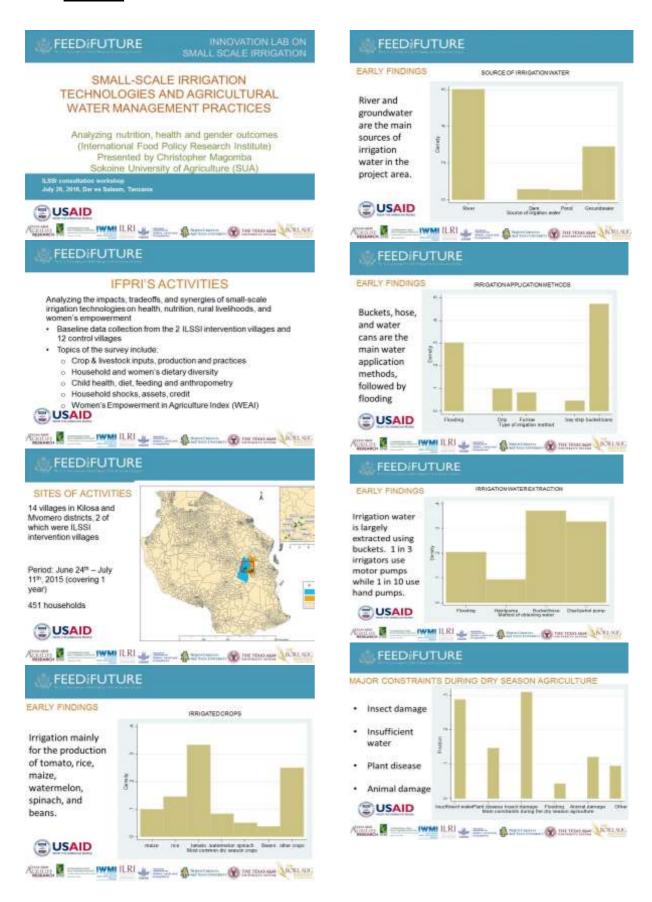



















# <u>Presentation 4: Small-Scale Irrigation Technologies and Agricultural Water Management</u> Practices



#### **FEEDIFUTURE**

#### HOUSEHOLD FOOD SECURITY IN TANZANIA

|                                                                           | West-Inflation<br>to 224 | Herm<br>matt | profes of two |
|---------------------------------------------------------------------------|--------------------------|--------------|---------------|
| THE RESERVE OF THE PERSON NAMED IN                                        | Mean                     | Mean         |               |
| moreout free!<br>security access<br>sec. 9-27                             | 5.92                     | 258          | 0.0004        |
| ornale distant<br>bendry scare:<br>andher of<br>requires<br>annument      | 3.71                     | 4.20         | 0.0010        |
| excellent distary<br>freedity: number<br>f freed collegiones<br>oracitael | 4,88                     | 5.00         | 0.0003        |



#### DATA ON WOMEN'S EMPOWERMENT IN AGRICULTURE INDEX

- · Intra-household survey tool
- · The WEAl measures women's empowerment across 5 domains of empowerment (5DE) shown on the right as well as a Gender Parity Index
- · WEAl is on a scale from zero to one, with higher values = greater empowerment
- · ILSSI is using a modified WEAI to include more details on irrigation

| Domain             | Indicate                 | Weight |
|--------------------|--------------------------|--------|
| Production         | THE RESIDENCE TO SERVICE |        |
| -                  |                          |        |
|                    | 0-10-                    | 100    |
| Access to          | Printed the Printed      |        |
| 2000               | Annual transference      |        |
|                    |                          |        |
| Community          | Group elector            | 100    |
| Maderating         | Speaking in points       | 860    |
| Tires<br>Managines | Workland                 | 1000   |
| Management         | Lawre                    | 100    |

#### # FEED/FUTURE

irrigators have only a slight edge over non-irrigators in WEAI scores, which suggests that irrigation is not contributing much to women's empowerment in Tanzania INITIAL RESULTS OF WOMEN-EMPOWERHENT IN AGRICULTURE INDEX (WEAR)

| WEAI     | Irrigators | Gender<br>Parity Index | Non-<br>irrigators | Gender<br>Parity<br>Index | Contributors to disempowerment                                                                        |
|----------|------------|------------------------|--------------------|---------------------------|-------------------------------------------------------------------------------------------------------|
| Tanzania | 0.88       | 0.96                   | 0.86               | 0.92                      | Group membership     Credit access     Leisure time     Speaking in public     Autonomy in production |





#### DECISION MAKING ON IRRIGATION IN TANZANIA

|                            | How seach legals do<br>making decision | d you have in                  | declaions on               | out did you have in<br>the use of income<br>and from |
|----------------------------|----------------------------------------|--------------------------------|----------------------------|------------------------------------------------------|
|                            | avigated food crop<br>farming          | errigated cash<br>loop farming | trigated foot coop farming | progetted cash crea-<br>forming                      |
| No input                   | 100                                    | 100                            | 19                         | 499                                                  |
| input into very less       | 144                                    |                                | 100                        | 100                                                  |
| Bedoon.                    | . 29                                   | 333                            | 319                        | jet                                                  |
| Right Into some decisions. | 235                                    | 315                            | 265                        | 30%                                                  |
| equit into most decisions. | 30%                                    | 245                            | 29%                        | 239                                                  |
| Again into all decision    | 30%                                    | 149                            | 345                        | 149                                                  |
| Tutul                      | 100%                                   | 100%                           |                            |                                                      |

#### FEEDIFUTURE

#### GENDER-IRRIGATION TECHNICAL WORKSHOP SERIES

- Given country efforts to scale up irrigation for climate resilience, productivity, food and subtitional security, important to noise sure vicines have equal access to

- paron mee technical workshops were organized with WMI and national partners in: Enlopia (Nach 9-10) ath Idrathy of Agriculture and Nacrot Resource. Others (April 13-14) with Olema Impairs Development Authority (NDDA) Temparis (Agric 20-21) with Society Mehanity of Agriculture and Platforn for Agricultura Policy Analysis and Coordination (SAPAC)
- Printing and knowledge eachenge; gender training from IPPRITYWIII, presentations and case studies from government, MCDs, researchers, and donors straing lessons learned on promoting gender equality in irrigation.



#### CONSTRAINTS TO WOMEN'S IRRIGATION ADOPTION

#### Key Constraints Identified:

- Technologies don't meet women's preferences (e.g. affordability, maintenance needs, fuel requirements, transportability, multiple uses)
- Less access to information (due to mobility constraints, not belonging to groups where info is disseminated, etc)
- · Lack of access to and control over assets required for adoption (e.g. land).
- Exclusion from access to and decision making over collective water resources (e.g. imgation canals)
- · Limited access to credit



#### OPPORTUNITIES TO PROMOTE GENDER **EQUALITY IN IRRIGATION**

#### Key Opportunities Identified:

- Key Opportunities Identified:

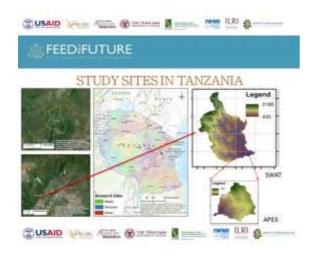
  Ornal potential for participation, user-centered technology design to better address access in sends and pretriences.

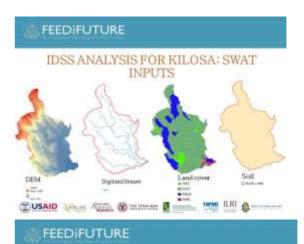
  Develop new outreats models to essure information effectively resistee both rest and scrops.

  Facilitate access to credit on supply and demand, side, provising financial iteracy taking for women and men, forming propep to restage and share risk.

  Support women's participation in decision-making in groups (targets?)

  Targeting women with productive assets (e.g., HKI BF) or encouraging joint ownershipstancing of productive assets (e.g., HKI BF) or encouraging joint ownershipstancing of productive assets.




#### Presentation 5: Overview of Integrated Decision Support System (IDSS)



#### IDSS ANALYSIS FOR KILOSA WATERSHED, TANZANIA





## BASELINE SCENARIO KILOSA: MAIZE AND RICE

| Practice                              | Rice             | Maten |
|---------------------------------------|------------------|-------|
| Tilbajjii                             | 11/15            | 10/10 |
| Tillage                               | 11/30            | 10/30 |
| DAP fortillion application            | 11/30 (25 kg/ha) | None  |
| Planting                              | 11/30            | 10/30 |
| lst stage urea fietilize application. | 11/30(50 kg/ha)  |       |
| 2nd utageuros fortillos application   | 02/28 (50 kg/ha) | None- |
| Havet                                 | 04/9             | 2/20  |

Note: fartilizer is not applied for maize in the study watershed.



#### SWAT CALIBRATION FOR KILOSA

- Streamflow data for flow calibration SWAT.
- SWAT was calibrated for a nearby watershed in the Dakara and Makata River gauging stations in the Wami basin

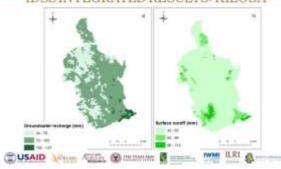


## FEEDIFUTURE


# CROP YIELD CALIBRATION 3.0 2.5 2.0 2.5 1.5 1.0 0.5 0.0 Maize (APEX) Maize (FAO) Rice (APEX) Rice (FAO)

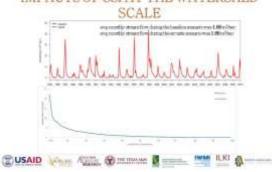
ions of APEX vs. PAOSD4T mains and rice violate from 1961 to 2010.

#### FEED/FUTURE


#### SCENARIOS

- Alternative scenario I: Non-fertilized rainfed crops + irrigated vegetable crop
- Alternative scenario 2: Fertilized rainfed crops + irrigated vegetable crop
- Alternative scenario 3: System of Rice Intensification (SRI)






#### IDSS INTEGRATED RESULTS: KILOSA



#### FEED/FUTURE

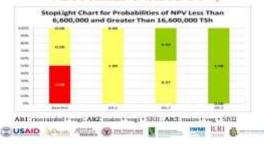
#### IMPACTS OF SSLAT THE WATERSHED



#### FEED/FUTURE

#### **CROP YIELD**




#### FEED/FUTURE

#### CAPACITY BUILDING



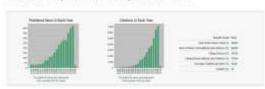
#### **€** FEED FUTURE

#### NET PRESENT VALUE (NPV)



#### FEEDIFUTURE

#### CONCLUSIONS


- The agricultural land in the Kiloss watershed is very small, which
  accounts 1.46% of the entire watershed. The average annual irrigation
  volume of water was merely 0.14% of the annual stream flow leaving
  the watershed. Implementation of irrigation did not cause significant
  reduction on the average monthly stream flow.
- Application of fertilizer (50 kg/ha urea and 50 kg/ha DAP) increased the crop yield substantially (e.g. 83% for maize). Also addition of fertilizer reduces soil loss by increasing the crop cover.
- The irrigation of vegetables use of fertilizer and practice of System of Rice Intensification (SRI) was the most profitable scenario.



#### FEEDIFUTURE

#### HIGH REPUTATION OF THE IDSS TOOLS

Historical trends of published SWAT-related peer-reviewed articles



Source: SWAT Literature Database as of Jan 23rd 2016 (Web of Knowledge Citations)



#### .....FEED/FUTURE

#### IDSS TOOLS WIDELY APPLIED IN OTHER PROJECTS

- · IDSS model development
  - Models developed over 30 years and widely used in USA for agricultural and environmental policy development
  - Worldwide application over past decade
- Past engagements in Ethiopia
  - IWMI and ICARDA hydrologic modeling of Blue Nile and Lake Tana basins
  - Simulation of farming systems with support from Gates Foundation
  - o Growing use in Ethiopian universities



#### FEEDIFUTURE



#### **FEEDIFUTURE**

e). Tometo, Cabbage and Fodder schadule

| Operations                            | Tomato          | Culthage        | Fodder Practice<br>(Outs/Vensh) |  |  |
|---------------------------------------|-----------------|-----------------|---------------------------------|--|--|
| TEage                                 | 4/30            | 4/30            | 4/14                            |  |  |
| Tilago                                | 5/15            | 5/15            | 3/1                             |  |  |
| 1st stage unsa fertilizer application | 5/15 (34 kg/hal | 5/33 (34 kg/hs) | 7/1 (25 kg/ku)                  |  |  |
| Flanting                              | 5/15            | 5/15            | 3/1                             |  |  |
| OAP Sertificies application           | ylqqs f'mb      | ylqqa Fools     | 7/1, (50 kg/hid)                |  |  |
| Znd stage uran fertilizer application | don't apply     | don't apply     | 8/30 (35 kg/ha)                 |  |  |
| Harvest                               | 9/22            | 16.15           | 8/90                            |  |  |

| USAID | No.  | AUTE. | (C) THE DOTTERS | 2 | IWM | ILRI | 4 |  |
|-------|------|-------|-----------------|---|-----|------|---|--|
| FEE   | DIFL | JTUF  | RE              |   |     |      |   |  |

#### EX-ANTE STUDY RESULTS: KILOSA

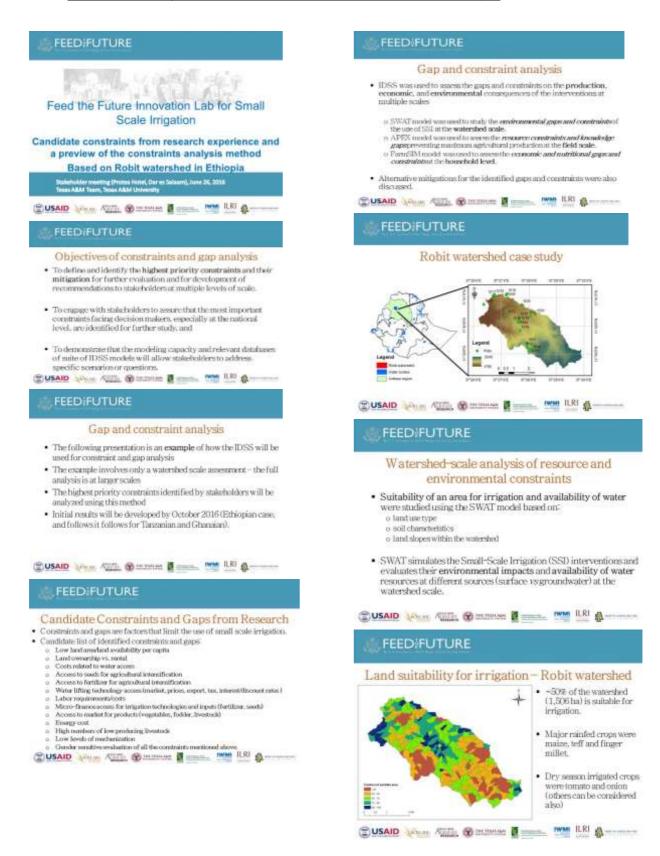
- · Scenario description
  - o Baseline scenario: no or minimal irrigation
  - Alternative scenario 1: veg. irrigation + fert. Appl. + rice-rf
  - o Alternative scenario 2: veg. irrigation + fert. Appl. + rice-sri
  - Alternative scenario 3: veg. irrigation + fert. Appl. + rice-sri (area increase)



#### EX-ANTE STUDY RESULTS: KILOSA

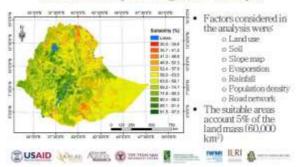
- · Scenario description
  - Baseline scenario: no or minimal irrigation ( -mono crop-maize + rain-fed rice/current fertilizers, -no or minimal arrigation for (omato& cathage, fodder and napier/current fertilizers)
  - Alternative scenario 1: veg. irrigation + fert. Appl. + rice-ff no irrigation: dual crop of maize/veg-fodder, rain-fed rice/ recommended fertilizer for maize
  - -irrigation for tomato & cabbage, fodder and napier/optimum or current fertilizer




#### EX-ANTE STUDY RESULTS: KILOSA

- Scenario description
  - Alternative scenario 2: veg. irrigation + fert. Appl. + rice-sri
    -no irrigation: dual crop of maixw/veg/recommfertilizer for maixw
    -irrigation for Rice-SRI, tonuto & cubbage, fodder and
    napien/optimum or current fertilizer
  - Alternative scenario 3: veg. irrigation + fert. Appl. + rice-sri (area increase)

Note: same as alternative scenario 2 but with a large increase in area allocated to rice-SRI




# <u>Presentation 6: Candidate constraints from research experience and a preview of the constraints analysis method, based on Robit watershed in Ethiopia</u>

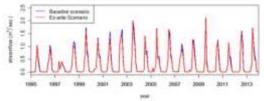


#### FEED/FUTURE

#### Land suitability for irrigation - Ethiopia



#### **FEED/FUTURE**


#### Available water resources in Robit watershed

- Average annual rainfall = 1,400 mm
  - Average annual groundwater recharge = 280 mm Average annual surface runoff = 520 mm ~7,000,000 m? over the evalenthed or 37% of the minfell )
- Amount of water required for dry season irrigation for tomato = 1,500,000 m<sup>3</sup> ~40% of the groundwater recharge
- · At the watershed scale, groundwater recharge can support irrigation for vegetables (in suitable areas) in a sustainable manner.



#### FEED:FUTURE

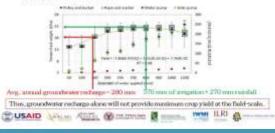
#### Impacts of SSI at the watershed scale



- . The average monthly stream flow at the outlet of the Robit watershed reduced by ~6%, minor reductions in high flows.
- No major environmental impact such as erosion due to SSI was observed. INVESTIGATION CUSAID ADDRESS ASSESSED TO DESIGNATION TO THE

## FEED/FUTURE

#### Field-scale analysis of resource constraints


- · The APEX model was used to identify major resource constraints using tomato as a case study crop.
- · The analysis was centered on water and nutrient availability/limitation for tomato production.
- . Where available the analysis used the field studies and survey data.

## CUSAID VALLE ACTION OF THE PROPERTY IN THE ILEY

#### **FEEDIFUTURE**

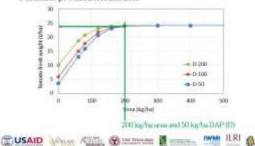
#### Field-scale irrigation water management

Water-production function



#### **FEEDIFUTURE**

#### Fertilizer use


- · Current fertilizer application rates are lower than rates recommended by the Ethiopian Agricultural Research Institute (EARI).
- · Only 30-40% of smallholders use fertilizer,
- · Lower applications of fertilizer inputs kept agricultural production and productivity low.
- · However, there is an increasing trend in fertilizer use.



#### FEED FUTURE

#### Fertilizer use

Fertilizer production function



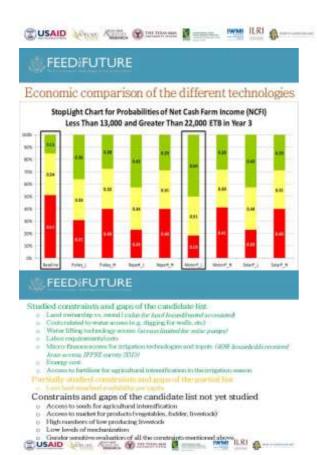


## Household-scale analysis of economic and

- ParmSIM model used information on costs of agricultural inputs and irrigation equipment, and capacities of water lifting technologies (WLTs) and corresponding labor to evaluate the economic and nutrition benefits of adopting SSI technologies.
- The WLTs evaluated include:
  - o pulley and bucket o rope and waster pump
  - o motor pump, and
- Based on field data and simulation results from the APEX, each WLT was
  evaluated as to its capacity to pump enough irrigation water to cover the
  total potential irrigable land.



#### FEED FUTURE


#### Economic gaps and constraints

| Types of WLT          |             | Flow rutu | Cost WLT |                        |
|-----------------------|-------------|-----------|----------|------------------------|
|                       | Operated by | (Uzentri) | (Ditro)  | Insues/Constounts      |
| Pulling/budget        | Hend        | 15        | 1310     | require more labor     |
| Rope and washer pump. | Hassi       | 14        | 3700     | frequent brestokowym   |
| Motor pump-           | Funi        | 170       | 8500     | high maintenance cents |
| Stofar pomp           | Skirlar     | 160       | 16000    | high capital costs     |



#### Economic gaps and constraints

- FarmSIM analysis was divided into two case studies:
- low irrigation labor cost, and
   high irrigation labor cost (3X low cost category).
- · The labor was split between hired and family labor to reduce the costs (forgoing the opportunity cost)



#### **FEED/FUTURE**

#### Example of mitigation of constraints and identification of gaps

- Groundwater recharge can support irrigation water requirement at the watershed-scale, but not at field scale.
  - Locally available surface runoff could be harvested and used to support the irrigation water from shallow ground water
  - It will also reduce any potential environmental effects since. the surface runoff is harvested during high rainfall sesson.



#### Example of mitigation of constraints and identification of gaps

- · Low soil fertility, coupled with ineffective management practices (e.g. water and nutrient), is significant constraint to SSL
  - application of rates of irrigation and fertilizers that provides the best combination of production, environmental and economic outcomes.



- · high irrigation labor costs are a significant constraint on the profitability of irrigated tomato production and sale in Robit.
  - use of family labor and less labor-intensive irritation methods (e.g. drip irrigation) may reduce labor costs.
  - > proper training on the operation and maintenance of new WLTs can save resources.
  - > policy changes to encourage smooth transition into environmental friendly technologies (e.g. solar pumps).



#### Conclusion

- · The ability to concurrently assess the production, economic, and environmental consequences of the interventions provides a new, integrated capacity to analyze and inform strategies and specific applications.
- · Constraints and gaps were studied based on field experience (and ex-ante analysis) and corresponding mitigation strategies were proposed.
- . This example shows how the IDSS will be used in subsequent constraint and gaps analysis identified by this

#### FEEDIFUTURE

#### Way forward

- We seek your help on identifying and prioritizing opportunities and constraints that apply to SSI interventions for further IDSS analysis in Tanzanian case.
- A range of scenarios will be studied to show how the constraints can be mitigated and by how much?
- Optimum solutions that consider production, environmental and economic consequences will be looked for:





#### Field-scale irrigation management

- Droughts and rainfall variability keep the agricultural production very low in Ethiopia and sub-Saharan Africa.
- The duration of the rainy season was about three months that farmers cultivate only once in a year.
- APEX model was used to assess water and nutrients requirement for tomato production during dry season using various irrigation pumping technology tested at the field studies and amount of labor and time required for irrigation.





#### FEED/FUTURE

#### Economic gaps and constraints

 Constraints related to WLTs include labor, maintenance, and capital costs, as well as equipment breakdowns.

| Types of WLT         |             | Plow rate | Cost WLT |                       |
|----------------------|-------------|-----------|----------|-----------------------|
|                      | Operated by | (I/min)   | (Birr)   | Essues/Constraints    |
| Pulley/bucket        | Hand        | 15        | 1310     | require more labor    |
| Rope and washer pump | Hand        | 14        | 3700     | frequent breakdowns   |
| Motorpump            | Fuel        | 170       | 8500     | high maintenance cost |
| Solar pump           | Solar       | 16        | 16000    | high capital costs    |



#### 9 Annex 4: Workshop evaluation

At the end of the workshop participants were asked to fill in a brief, 1-page, 18 question workshop evaluation questionnaire focusing on both the workshop content and the workshop process. Overall the responses were positive with a few respondents saying they would have liked a bit more time for presentations, group work and Q&A. The results of the evaluation are as follows:

| Workshop content                                                                                                                                    | Agree | Strongly<br>Agree |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| I clearly understand the aims and work of the ILSSI project                                                                                         | 10%   | 90%               |
| I clearly understand the component contributions of each of the project partners                                                                    | 50%   | 50%               |
| I clearly understand how the IDSS is supporting the overall objectives of the project                                                               | 20%   | 80%               |
| The constraints identified for prioritization were the right ones for the Tanzanian context                                                         | 50%   | 60%               |
| The workshop provided a good opportunity to share research and experiences on small-scale irrigation and irrigated fodder interventions in Tanzania | 50%   | 50%               |
| I would like to be kept informed of further ILSSI project work and developments                                                                     | 30%   | 70%               |
| I am happy to be involved in future ILSSI project stakeholder engagement activities                                                                 | 40%   | 60%               |

| Workshop process                                                                           | Disagree | Agree | Strongly<br>Agree |
|--------------------------------------------------------------------------------------------|----------|-------|-------------------|
| There was a good balance between presentations and group work                              | 1%       | 5%    | 34%               |
| I would have liked more time for the group work                                            |          | 10%   | 70%               |
| I would have liked more time for the presentations                                         |          | 20%   | 60%               |
| I clearly understood what was being asked of the participants                              |          | 10%   | 20%               |
| There was enough time for discussion                                                       |          |       | 30%               |
| There was enough time for Q&A                                                              |          |       | 40%               |
| The workshop was the right length for the content                                          |          |       | 60%               |
| I found the workshop a useful learning and information sharing experience                  |          |       | 20%               |
| The information materials provided before and during the workshop were relevant and useful |          |       | 20%               |
| Communication about the workshop was clear and well timed                                  |          |       | 70%               |

In response to the question 'What would you like more information about in any follow up from the ILSSI project team?' respondents replied:

- On ground implementation
- To be informed on further ILSSI project work and development
- Selection of priority project areas
- About the modal APEX, SWAT and FARMSIM
- Research findings to be shared with the research department in the National Irrigation Commission
- Workshop report to be shared among participants
- Implementation on irrigation of fodder/forage and marketing of products from the project areas
- Share the presentations
- Viable SSI technologies
- Feedback of the meeting, prioritized constraints and the way forward
- Gender issues on irrigation
- A summary of policy statements for line ministries
- Waiting for full results/outcomes from ILSSI

#### **Additional comments:**

- A useful workshop that gives insights on future work on irrigation and household studies.
- More collaboration between ILSSI and other Feed the Future projects
- · Well-organized workshop, organizers, facilitator and presenters
- Grateful to share experiences in this workshop
- Research work on irrigation of fodder/forage in semi-arid areas
- I invite organizers to visit my Basin Authority at Wami Ruvu to see constraints and challenges we are facing.