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Innovation Lab for Small Scale Irrigation

Upscaling analysis — from small river basin to country

1. Introduction

The USAID Feed the Future Innovation Laboratory for Small-Scale Irrigation (ILSSI) was formed to
undertake research aimed atincreasing food production, improving nutrition, accelerating economic
development, and protecting the environmentin Ethiopia, Tanzania, and Ghana through strategic
investments in agricultural development, including small-scaleirrigation (SSI).

National statistics show that SSlis not widely practiced inthe three ILSSI study countries. Situation
analysis of irrigating farmers provides first-hand evidence that SSI offers additionalfarming opportunity
inthe dry season and helps generate additional incometo improve the welfare of rural households.
Moreover, ILSSI’s ex-ante analyses of proposed SSlinterventions in Ethiopia, Tanzania, and Ghana have
indicated that, in general, there is groundwater or surface wateravailable to sustain proposed SSI
interventions at the target sites, although knowledge gaps requiring further research and specific
constraints onthe adoption of SSI (e.g., adverse environmental impacts of SSI, low soil fertility,
ineffective management practices, high costs of laborand SSI technologies, irrigation water shortages)
were identified. With collected field data, ILSSI has begun refining theseresultsin ex-post analyses, and
assessing candidate gaps and constraints and their mitigation. These analyses will ultimately enable ILSSI
to recommend optimal SSl solutions at the study sites.

But can SSl interventions be “upscaled” beyond the se study sites, at the national level? What is the
appropriate investment scale for SSI development across a nation, and which locations within a nation
have the greatest investment potential? Using currently available knowledge and data, a variety of
modelingtools, and a newly developed methodology forassessingirrigation adoption decisions at the
national scale, ILSSI’s upscaling analyses will assess the potential for expanding SSlinthe project
countries, identify specificlocations where SSl will be feasible, and evaluate the consequences atthe
country level foragricultural production, environmental sustainability, and socio-economic outcomes.

In Ethiopia, upscalinganalysis is underway and is slated for completioninyearfour of the ILSSI project.
Data collection efforts are underway for upscaling analyses in Tanzania and Ghana, which will beginin
yearfour. This report describes: (i) the dataand methodology used inthe ILSSI upscaling analyses,
including anew, agent-based modeling technique developed by ILSSI for assessing SSladoption
decisions atthe national scale; and (ii) the implementation and results, to date, of ILSSI’s upscaling
analysisin Ethiopia.

2. Data and methodology

While irrigation investment analysis is by no means a novel process, new challenges emerge in
assessments atthe national scale. Forexample, in more localized analyses, the prices of crop products
used to evaluate the economiccosts and benefits of irrigation investment are often taken as exogenous
constants. Thisimplies that no consideration is given to the market potential of irrigated crop products.
Although this practice is legitimate in analyses at the river-basin scale orat the project level, market
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potential may act as an important constraintin determining national irrigation adoption potential. For
this study, we have developed a new methodology to handle the additional complexities that arise in
irrigation adoption analyses at the national level.

This new upscaling framework, showninfigure 1, integrates several modeling tools and biophysical and
socioeconomicdatato provide spatially disaggregated, quantitative estimates of SSI development
potential in the three study countries. The key components of the framework include:

2.1. Pre-suitability analysis

The pre-suitability analysis uses the GIS spatial data analysis tool to score land suitability forirrigation
development, based on select environmental criteria. The land suitability scores are used to establish
the suitability domain for SSI, aninitial estimate of the geographicareasin whichirrigation adoption
could occur.

2.2. Agent-based model forirrigation expansion simulation

After establishing the suitabilitydomain for SSI, we simulate the process of irrigation technology
diffusion. Economicand water balance considerations are introduced into the simulation to refineinitial
estimates generated in the pre-suitability analysis, and to determine the likely scale and pattern of SSI
development across the nation.

This stepinvolves the development of several modeling activities, including an agent-based model
(ABM) for simulatingirrigation expansion. Agent-based modeling, a class of computational models that
has emergedinrecentyears, provides abottom-up paradigm forexploring the dynamics of acomplex
system. These models have been extensively applied to investigate technology diffusion issues (Berger,
2001; Deffuantetal., 2002; Kaufmannetal., 2009). Inthe context of this study, the application of agent-
based modelingtechniques allows us to define farmers asautonomous agents and to explicitly evaluate
multiple irrigation technology adoption decisions at the farm level. This provides a realistic
representation of real-world dynamics, since SSlis regarded as a decentralized irrigation development
scheme.

The basic assumptions underlying the development of the ABMare as follows:

(1) Irrigation adoption occurs under social influence (i.e., farmers canlearn from theirpeers) andis
alsodriven by suitability considerations (Foster and Rosenzweig, 1996; Krishnan and Patnam,
2013); therefore, farmers with irrigation technology adoptersin their neighborhoods are more
likely toadoptthe technology, and sites with higher pre-suitability scores tend to be developed
first.

(2) Afarmer’sirrigationadoption decisionisalsoinfluenced by economicviability and water
availability. Inthe long-run, irrigation adoption must be economically profitable. The prices of
irrigated crops in our model are simulated as endogenous variables. Crop prices respond to the
increase in crop production thatresults from irrigation development. Over-adoption will lead to
a price crash, whichrestricts the further expansion of irrigation. Expansion is also constrained by
the amount of waterresourcesavailable forirrigation, a calculation thatincorporates
considerations of environmental sustainability. Irrigation expansion in ariverbasin will stop if all
waterresources presumably allocated foragricultural use are depleted.
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A more detailed description of the ABMis provided inthe Appendix to this report.
2.3. SWAT

The Soil and Water Assessment Tool, or SWAT (Arnold et al., 1998) is a comprehensive hydrologicand
agricultural model with a proven-track record of global application. SWAT is used as a major biophysical
modelingtoolinthe upscaling analysis. The economiccost-benefit and water balance analysesin the
ABM require the estimation of irrigated crop yields, irrigation water demand, and wateryields of river
basins. These variables are estimated using the SWAT model.

2.4. Irrigation and crop production costs input (economicanalysis)

Thisanalysis serves as a channel for micro-level knowledge and datato enter the macro-level (upscaling)
analysis. Household survey data on existing smallholder farmers are summarized and analyzed to derive

nutrient management scenarios and production costs data that characterize SSl production, toinform
the SWAT and ABM simulations.

2.5. SPAM

Land coverdata is one of key input data sets for the upscaling analysis. SPAMdata (as defined and
described below) forthe three study countries are developed to complement remote sensing based land

coverdata by providing amore detailed description of the crop production system (e.g., spatial
distributions of harvested area, physical area, and yields by crop).

The Spatial Allocation Model, or SPAM (You and Wood, 2006; You, Wood, Wood-Sichraand Wu 2014),
isdesignedto plausibly disaggregate national or sub-national agricultural census datato a fine-
resolution grid. SPAM combines alarge collection of sub-national production data, satelliteimagery of
the distribution and intensity of cropland, maps of the share of area currently equipped forirrigation,
and data on population density, crop prices, and the biophysical suitability of crop production. The result
for each pixel (notionally of any size, but typically ranging from 1 to 100 km?) is the area and production
of each crop produced, split by the shares grown underirrigated, high-input rainfed, and subsistence
conditions (each with distinctyield levels).
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Figure 1. Proposed methodological framework for assessment of national SSI development potential

3. National assessment of SSI development potential for Ethiopia: implementation and draft outputs

3.1. Pre-suitability analysis

Potential land in Ethiopia suitable for SSI was identified using GIS-based Multi-Criteria Evaluation (MCE)
techniques. Land suitability was determined by developing and assigning weight to the key factors that
affectirrigation potential, usinga 1-km grid. These factors were selected based on current literature and
expertopinion (Akincietal., 2013; Chenetal., 2010; Mendas and Delali, 2012; Worqlul et al., 2015), and
included physical land features (land use, soil and slope), climate characteristics (rainfall and
evapotranspiration), and market access (proximity to roads and access to market). Factors were
weighted using a pair-wise comparison matrix, reclassified, and overlaid to identify the suitable areas for
irrigation. Table 1 presents the types of input data used, and their respective sources and spatial
resolutions.
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Table 1. Source and spatial resolution of data used for the land suitability analysis.

Data Source Spatial resol.(m)
Land use Land use Database of the World (LADA) from the Food and 10,000
AgricultureOrganization (FAO), 2010

Land use Spatial Production Allocation Model (SPAM), 2014 1,000
Soil Africa Soil Information Service (AfSIS), 2015 250
Digital Elevation Enhanced Shuttle Land Elevation Data from the United States 30
Model (DEM) Geological Survey (USGS), 2000 (releasedin 2015)

Population density Global Gridded Population Database, 2000 1,000

Road network

MODIS potential
evaporation (mm)

Rainfall (mm/year)

Ethiopian Road Authority (ERA), 2006 --
MOD16 Global Terrestrial Evapotranspiration Data Set, 2000—- 2010 1,000

Ethiopian National Meteorological Agency (ENMA), 1996 - 2010 --

Slope and rainfall deficit were found to be the most important factors in assessing suitability for

irrigation, followed by population density and soil characteristics. Suitability classes were given weights
using equal interval ranging technique. Preliminary suitable land areas were computed using the
Weighted Overlay analysis in ArcGIS. The preliminary suitability map shows the location and percentage
of irrigable land in each region of Ethiopia (fig. 2). A constraint map with a value of zero and one was
used to exclude the unsuitable areas and to optimize with a user-defined threshold number.

- SSI-suitable land

Figure 2. Preliminary suitable land for SSI
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Figure 3indicates the area of suitable land fora variable threshold number. Pixels with a suitability value
of greater than 85% were identified as a suitable area. The result indicated thousands of suitable
polygons with areas ranging from 1 km” to 500 km”. Nearly 5.3% of the landmass, or approximately
60,025 km?, is suitable for irrigation.
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Figure 3. Irrigation-suitable land area at different suitability levels (60,000 km? is suitable for a threshold level of
85% and 96,000 km? is suitable for a threshold level of 82%)

Suitable land areas were categorized by major river basins. The Abbay (Blue Nile) basin has the largest
area of suitable land (21,186 km?), while the Rift Valley basin has the highest percentage of suitable land
(20%).

3.2. SPAM data development

In SPAMdata development for Ethiopia, we collected crop statistics on the second sub-national (e.g.,
district) levelforthe majorcrops in Ethiopiaforthe last decade. To avoid atypical years, we used the
2009-2011 three-yearaverage asourbaseline for 2010. For each grid cell, SPAMfirst provides estimates
of suitable irrigated and rainfed areas for each crop, as well as the corresponding potential biophysically
attainable yields. The SPAMapproach then usesall the various input layers to disaggregate reported
sub-national (administrative unit) statistical data on actual crop area and yield, to determine a plausible
spatial variation of the baseline (2009-2011 average) production area andyield by pixel, by crop, and by
inputlevel (irrigated and rainfed). SPAM databases developed for global orregional study typically have

a spatial resolution of 5arc-minutes, orapproximately 10 km at the equator. In this study, the resolution
of SPAMdata for the three study countries wasimproved to 1 km.

3.3. Hydrologicand crop simulation

SWAT has been used to estimate different biophysical processesinthe ILSSI project. SWAT is a basin-
scale, continuous-time modelthat predicts the impacts of managementand climate on water, sediment,
and agricultural chemical yields in watersheds (Arnold et al., 2012). SWAT simulates canopy interception
of precipitation, partitioning of precipitation, evapotranspiration, subsurface flow, return flow from
shallow aquifers, and water distribution between soil layers. It also estimates yields for crops,
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grasslands, andtrees (Luo et al., 2008, Faramarzi et al., 2008, Schuol et al., 2008). SWAT has been used
inthe ILSSI project to study the impacts of SSl on environmental sustainability.

Different spatial data(e.g., land use and soil) and temporal dataare used in the SWAT model for the
upscaling activity. The land use data has 30-m resolution and was obtained from the China’s Global Land
Cover Mapping (Chenetal., 2015). This land use map was combined with the SPAM dataset
(HarvestChoice, 2014), which provides detailed crop information for a1l km-by-1km grid. The resulting
map provides spatially explicit crop information for the agricultural land. Major crops that are cultivated
in Ethiopiainclude teff, sunflower, sorghum, barley, wheat, maize, coffee, cotton, carrot, lentils, and
potato. The soil datawas obtained from the Africa Soil Information System (AFSIS) and has a spatial
resolution of 250 m. The AFSIS data includes grids of soil properties such as sand, siltand clay fractions,
coarse fragments, and organiccarbon, for a depth of up to six soil layers (Vagen etal., 2010). The
informationin the AFSIS database was used to generate the SWAT soil database using Saxton and Rawls’
(2006) pedo-transferfunction. Climate data was obtained from the Ethiopian National Meteorological
Agency (ENMA, 2016). Observed climate dataincludes rainfall and maximum/minimum temperatures
for 246 different meteorological stationsin Ethiopia. The weather generator was used to fill missing
data. Climate datafrom the synoptic meteorological stations, including rainfall, maximum/minimum
temperature, relative humidity, wind speed, and solarradiation, was used to prepare the weather
generator. The crop management data was based on experience in the ex-ante and ex-post studies and
data obtained from the household survey.

The SWAT model was set up using predefined watersheds of 10 km-by-10km grid size. Grid-based
model development was convenient for sharing model simulations; for example, the grid-based
approach helped us to easilyintegrateresults from SWAT with the ABM. The ex-ante and ex-post
analyses with the Agricultural Policy/Environment eXtender (APEX) model identified crop parameters for
the vegetables. These crop parameters were used in the SWAT model to simulate cropyield.

In the upscaling activity, SWAT is used to provide spatially disaggregated estimates of water availability,
irrigation water consumption, and crop yields for different vegetable crops that could be cultivated
duringthe dry season. The vegetable crops selected for simulationinclude tomato, onion, pepper,
cabbage, and potato. These outputs from SWAT are provided to the ABM to optimize crop mix for
irrigated crops. Different scenarios will be simulated with the SWAT model to provide diverse
information forthe ABM. For example, to study the available waterand potential forvegetable
production at different climaticconditions, outputs are provided forthe ABMin the driest and wettest
climaticconditionsinthe record. Because fertilizer application rates also impact vegetable yields, the
SWAT model will also simulate maximum and baseline fertilizer rates. The maximumrates are
determined based onfield research at ILSSI sites, and the baseline rates are obtained from the
household survey.

Analysis was performed to assess tomato production potential, available water resources and irrigation
water consumptioninthe driestyearonrecord (1984) in all agricultural fields across the country.
Preliminary findings showed that tomatoyield can range from lessthan 1 ton/hato 2.8 ton/ha(fig. 4a).
The available waterresources (including surface runoffgeneration and ground water recharge) across
the agricultural fields range from less than 100 mm to over 2000 mm (fig. 4b).
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Figure 4. a) Spatial tomato production across agricultural lands, and b) available water resources, including
surface runoff generation and groundwater recharge

3.4. Irrigation and crop production costsinput

The ABM is used here to assess the impact of SSI technologies onfarmers’ livelihoods, especially the
economicprofits fromirrigated crops. Part of the inputinformation forthe ABMrelatestoirrigationand
otherinput costs of the irrigated crops. Capital and operational costs thatinclude the costs of each
water-lifting technology, fuel, agricultural input and labor, are considered in this study. Dataon costs
were collected mainly from household surveys conducted by IFPRI, Africa Rising, LIVES-ILRI, and NBDC-
IWMI between 2012 and 2015. Information from the surveysincludes the costs per hectare (ETB/ha) of
fuel, maintenance, seeds, fertilizers (Ureaand DAP), and chemicals (pesticides and herbicides), as well as
laborrequiredforland preparation, planting, weeding, and harvesting. Four water-lifting technologies
were considered in this study: pulley and bucket, rope-and-washer pump, gasoline-motor pump and
solar pump. Information collected covered four main agricultural regions of Ethiopia: Amhara, Oromia,
Tigray and SNNP. Costinformation was provided for six types of cereal/grain crops (maize, teff, wheat,
sorghum, millet, and barley), two pulses (beans, peas), groundnuts, and six vegetable crops (tomato,
onion, pepper, garlic, cabbage, and lettuce). Information on potato, which can be grown as an irrigated
or rain-fed crop, was alsoincluded.

3.5 ABMforirrigation expansion analysis

The preliminary results of agent-based modeling for the upscaling of SSltechnology in Ethiopia are
shownintable 2 and figures 5 and 6. In the analysis, we include vegetable crops (tomatoes, onions,

cabbages, peppersand vegetables-other) and pulseand root crops (chickpeas, lentils, and potatoes) as
candidate crops for SSI.

As explained above, there are stochasticelementsinthe ABM, given the need for modeling farmers’
irrigation technology adoption decisions. To handle the uncertainty associated with the stochasticity of
the agent-based simulation, the modelis executed multiple times with varyingrandom seeds to
generate multiple realizations of irrigation expansion pathways.
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The estimated SSI development potential by region, whichis expressedin areas with irrigation adoption
potential shownintable 2and calculated as

N
_ ZizaAri
r N

A (1)

where A, isthe area with SSladoption potential inregion r (ha), A, ; isan estimate for A,. obtainedin
realizationi(ha, aggregated from the pixel-wise estimates for adoption area), and N is the number of

total realizations. The economicoutcome, orthe netrevenue fromthe irrigation development, is also
showninTable 2.

The simulations indicate that the SSI development potential in Ethiopiais about 800,000 ha, mainlyin
Oromia, Amharaand SNNP. The tworegions with the largest SSI development potential (over 300,000
ha perregion) are Oromiaand Amhara.

Table 2. Estimated SSI adoption potential in Ethiopia

Vegetables(ha) Pu'iii)i::ﬁ:; Total(ha) (miII’\ihce; rj:;;;s
Affar 55 0 55 0.015
Amhara 200,068 118,102 318,170 92
Benishangul-Gumuz 11,182 419 11,601 2.6
Gambella 320 9 329 0.12
Harari 194 398 592 0.13
SNNP 87,942 41,111 129,053 50
Tigray 9,847 457 10,304 3.2
Oromiya 179,885 150,908 330,793 101
Somali 413 83 496 0.4
Total 489,905 311,487 801,392 249.5

A probability mapis constructed to show the adoption probability of SSlin differentlocations (fig. 5). For
each cell onthe map, the adoption probability p is calculated as

_ Madopt
p == (2)

where ngq0p¢ is the number of realizations in which SSladoptionin the cell occurs, and N is the number
of total realizations.

As demonstrated on the map, while adoption of SSI could happen overavast geographicarea, there are
afewzonesin which successful adoption would most likely occur, such as the Central Rift Valley and
areas close tothe Lake Tana. We recommend that future endeavors promoting SSl adoption target
these areas.
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Figure 5. Adoption probability of SSI in Ethiopia

A map showingthe river basins thatare prone to waterscarcity (fig. 6) is constructed ina similarway. In
these regions, appropriateinstitutionalarrangements should be made in conjunction with SSI
investment activities to reduce negative environmental and socioeconomic consequences of SSI
development.
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Figure 6. Risk of water scarcity associated with SSI expansion

Finally, the estimated irrigation development potential is sensitive to the irrigation cost figure
used in the analysis, and the sensitivity is shown in Table 3. In reality, the small-scale irrigation
consists of a collection technologies with varying adoption costs. The cost levels under scenarios
accommodated in the sensitivity analysis were specified to approximate three typical situations
with different configurations of small-scale irrigation technologies in adoption. The estimated
irrigation development potential we already reported above refer to the irrigation development
potential in the baseline scenario, in which the irrigation cost was assumed to be $200/ha-yr.
This cost level was chosen to reflect the costs associated with the purchase and operation of
water liting devices such as motor pumps. Small-scale irrigation adoption may require
construction of certain types of infrastructure in upper stream areas (e.g. small reservoirs and
ponds etc.) to provide additional water storage capacities. Under baseline scenario, we assumed
that the costs of water infrastructure construction and operation will be financed by governments
or NGOs. In high cost scenario, it was assumed that farmers bear all costs of the water
infrastructure construction and operation, and a higher irrigation cost $1000/ha-yr was specified
to represent the irrigation costs of the whole system. An irrigation cost estimate in the middle
range $600/ha-yr was used in the medium-cost scenario under the assumption that costs of
constructing and operating water infrastructure will be partially covered by external donors.
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According to expected areas with small-scale irrigation development potential shown in Table 2,
small-scale irrigation development potential decreases as irrigation costs rises and drops from 0.8
million hectares in baseline scenario to 0.6 million hectares in medium cost scenarios and 0.5
million in high costs scenario. The results of the sensitivity analysis highlight the importance to
develop low-cost small-scale irrigation technologies.

Table 3 Estimated small-scale irrigation adoption potential in Ethiopia (ha)-sensitivity

IS I T Y
318,170 224,880 176,468
11,601 11,082 11,069
329 255 283
592 408 323
129,053 112,603 101,020
10,304 6,408 3,750
330,793 256,988 201,702
496 459 432
801,392 612,662 494,657

4, Conclusions

Whereas ILSSI’s ex ante and ex post analyses of SSlinterventions in Ethiopia, Tanzania, and Ghana have
focused on specificstudy sitesinthe project countries, upscaling analyses will assess the potential for
expanding SSl to the national scale, identify specificlocations where SSI will be feasible,and evaluate
the consequences at the country level for agricultural production, environmental sustainability, and
socio-economicoutcomes.

The assessment of SSl adoption decisions ata national scale (ratherthana more localized level) is
complex. Forexample, whereas analyses at a local level may treat a crop price as constantin cost-
benefit evaluations, when SSlinvestment at a national levelis proposed, crop prices must be treated as
variable. The upscaling framework that we developed integrates several modeling tools and biophysical
and socioeconomicdatato provide spatially disaggregated, quantitative estimates of SSl development
potential in atarget country.

In Ethiopia, upscalinganalysis is underway andis slated for completioninyearfourof the ILSSI project.
The pre-suitability analysis for Ethiopia has been completed, and indicated that nearly 5.3% of the
landmass in Ethiopia, or approximately 60,025 km?, is suitable forirrigation. The Abbay (Blue Nile) basin
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has the largest area of suitable land (21,186 km?), while the Rift Valley basin has the highest percentage
of suitable land (20%).

In the upscaling analysis, we use SWAT to calculate spatially disaggregated estimates of water
availability, irrigation water consumption, andirrigated crop yields. These estimates are provided to the
ABM for the irrigation expansion simulation. In Ethiopia, SWAT is simulating a variety of potential
irrigated, dry-season crops, including tomato, onion, pepper, cabbage, and potato. Preliminary findings
show that tomatoyield canrange fromlessthan 1 ton/hato 2.8 ton/ha, and that the available water
resources (including surface runoff and ground water) across agricultural fields can range fromless than
100 mmto over2000 mm.

The ABM is usedto analyze the impact of SSI technologies on farmers’ livelihoods, consideringirrigation
and otherinput costs of potential irrigated crops. In Ethiopia, we are using the ABM to simulate avariety
of candidate crops forSSI, including vegetable crops (tomatoes, onions, cabbages, peppers and
vegetables-other) and pulse and root crops (chickpeas, lentils, and potatoes). Preliminary results
indicate that SSI development potentialin Ethiopiais about 800,000 ha, mainlyin Oromia, Amharaand
SNNP. Simulations show that, while adoption of SSl could be widespread, SSl adoption is most likely to
be successful inselectareas as the Central Rift Valley and areas near Lake Tana. We recommend that
future endeavors promoting SSladoption target these areas.

ABM simulations alsoidentified river basins that are prone to waterscarcity. In these regions, we
recommend thatappropriate institutional arrangements be made in conjunction with SSlinvestment
activities, toreduce negative environmental and socioeconomic consequences of SSl development.
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APPENDIX A

Applying the ABM to model SSI expansion in Sub-Saharan African countries

The input data for the ABM are shown intable A-1. Additional input parameters required to launch the

simulation are shownintable A-2. Alist of candidate irrigated crops is identified priorto simulation, and

servesasa key assumption underlying the analysis.

Table A-1. Input data for ABM for upscaling analysis on SSI development potential in Ethiopia

Data

Pre-suitability for SSI
development

SPAM

Yields of candidate crops for
irrigation

Irrigation water use intensity
of candidate crops for
irrigation

Water yields by subbasin
Initial production by region
Initial consumption by region
Initial prices of candidate
irrigated crops of by region

Irrigation costs

Crop production costs other
than irrigation

Explanations

1kmx1km; derived through GIS-based Multi-Criteria Evaluation (MCE)
techniques; the pre-suitability scoreranges between 0-100; suitability domain
for SSI development is defined by setting a threshold for the pre-suitability
scoreprior to the ABM simulation;SSI adoption only occurs inthedelineated
suitability domain, or area with suitability scoregreater than the threshold

1kmx1km; provide cropping pattern datain base year (2010)

ton/ha; estimated using SWAT model

m’ H,0/ha-yr; estimated using SWAT model

m’ H,0/yr; estimated using SWAT model; subbasin is defined as 10km x 10km
grid cell

ton/yr; used as initial conditionsin simulatingcrop pricechange;available
from CSA survey reports

ton/yr; used as initial conditionsin simulatingcrop price change;
disaggregated from national statisticsaccording to population distribution

S/ton; availablefrom CSA survey reports

S/ha-yr: availablefrom household surveys collected in Ethiopia by IFPRI,
Africa Rising, LIVES-ILRI and NBDC-IWMI projects

S/ha-yr: available fromhousehold surveys collected in Ethiopia by IFPRI,
Africa Rising, LIVES-ILRI and NBDC-IWMI projects

Table A-2. Input parameters

Sihreshola: threshold of land pre-suitability scoreforirrigation adoption to occur

Pmax: Valueof probability pin eq. (AS1-1) correspondingto land pre-suitability score S=100

Pmin : Valueof probability pineq, (AS1-1) correspondingto land pre-suitability score S=S;j ensnotd

Qmax: Valueof probability gineq. (AS1-1) correspondingtoland pre-suitability scoreS=100

Pmin : Valueof probability gineq. (AS1-1) correspondingto land pre-suitability score S=S;jesno1a

R: radius of neighborhood of influence, km
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The proposed ABM runs on a square lattice which consists of 1 km-by-1km cells. Each cell isviewed as a
farm. Farms are autonomous agents. Farmsize is estimated as existing rainfed farming areain cells
using SPAMdata (i.e., we assume irrigation adoption will occur on existing agricultural land).

The model algorithms are shown in algorithm A1 (for the main model) and algorithms AS1and AS2 (for
the sub-models). Irrigation adoption is modeled as atechnology diffusion process. Atime stepin the
main algorithm (A1) represents agrowing season. At the beginning of each growing season, sub-model
AS1lisusedto evaluate the adoption decision of each non-adopting farmer. Inthe evaluation, a
probability indicatingafarmer’sinterestinirrigation adoption is first calculated. The calculation of the
probability is based on the epidemic model of technologydiffusion (eq. AS1-1). The epidemic model
(Griliches, 1957; Mans(eld, 1961; MansUeld, 1968; Rome, 1977) postulatesthatsocial influence isthe
main factor which drives the diffusion of atechnology. The formulation of the eq. AS1-1follows the Bass
model (1969), which is an aggregate technology diffusion model but has been adapted torepresentan
agent’sadoptioninanagent-based modeling context (Kiesling etal., 2012). The secondterm inthe
equationrepresents the peereffect, orthe influence of adopting farmersin apredefined neighborhood,
while the firstterm reflects the influence of other sources (e.g., agricultural extension services). The size
of the neighborhood of influence is defined by input parameter R. We also further assume thatare
linearly correlated with pre-suitability score (eq. AS1-2and AS1-3).

Once the farmer isinterestedin adoptingirrigation, the economicviability of the adoption and the
waterbalance of the regionin which the farmis located are assessed (eq. AS1-4, AS1-5and AS1-6) under
bounded rationality assumption. In particular, price in eq. AS1-6referstothe farmer’s expected crop
price at the end of the growing season. The price expectation is updated adaptively (Hicks 1939; Koyck
1954; Muth 1960; Nerlove 1958) (eq. AS1-7) accordingto “actual” price in the preceding growing
season.

Adoptionwill occuronlyifthe farmer perceives thatirrigated productionis economically profitable and

irrigation water demand can be fully met. Itis furtherassumed that, if adopted, irrigation will be used to
produce crops with the highest economic profitability.

I”

Once a farmer’s adoption decisions are revealed, “actual” prices of irrigated crops are estimated
according to production under the new irrigation adoption scheme (sub-model 3).

At the end of each growingseason, the economic profitabilityof irrigated production and the water
balance of adopting farms are re-evaluated. Inthe re-evaluation of economic profitability of irrigated
crops, expected crop price in eq. AS1-6 is substituted with the “actual” price of the irrigated crop
calculated by sub-model 3. If water scarcity occurs in a river basin, due to lack of data to furtherassess
farm’s water accessibility, asubset of adopting farms are picked up randomly to remove excess of
irrigation water demand. Itisassumed thatirrigation activities on these farms are restricted by water
scarcity, and they sufferaloss equal to capital investment forirrigation. The model tracks the assets of
adopting farms, which are calculated as accumulated profits since irrigation adoption. Adopting farms
exitirrigation adoptionif assetvalueislessthanO.

In the analysis, the model runs for a sufficient number of time steps until the relative change inthe
estimated adoptionrate issmall, orthe irrigation expansion stops under the constraints of water

availability and when marketforirrigated cropsis saturated. The adoption patternisthenreported and
taken as estimated potential for SSl expansion.
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Al Main model
Initialize simulation; set assets of all farms to zero. At eachtime step t (t=0, 1, 2, --*):

1. Foreachnon-adoptingfarminsuitability domain, evaluate adoption decision at the beginning of
growingseason (sub-model 1);

2. Update prices of irrigated crop according to production of irrigated crops under new adoption
scheme (sub-model 2); and

3. Foreachadoptingfarm, evaluate netrevenueusing updated crop prices; update farm assets; farm
exitsirrigation if assets<0.

AS1: Sub-model 1: adoption decision of individual farm

This sub-modelis designed to evaluatethe adoption decision of anindividual farm and determinethe
crop underirrigation once irrigationis adopted. The decision process represented in the sub-model
(described in more detail in Section 2) isillustrated in figure 2.

C = D

Search neighborhood, count adopting farmers

v

Calculate probability that the farmer is interested in adoption motivation
Pagopt (AS1-1)

v

Draw random number r from U (0,1)

v

Evaluating available amount of water resources for irrigation WAI (AS1-4)

v

For each candidate crop, evaluate economic profit, NE,, and irrigation water
demand, WD, from/for its cultivation (AS1-5) & (AS1-6)

v

Use criterion NE.>0 & WD <WAI to identify crop for irrigation. If there are
multiple crops which meet the criteria, select the crop with highest profitability

!
(= D

Figure 2. Farmer’s decision process for SSI adoption

No

Yes
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The probability indicating a farmer'sinterestinirrigation adoption Py is calculated as

1

Padopt =p + q (ASl-l)

Itotal

where pis the probability that the farmerbecomesinterested in adoption under independent external
influence, such asinfluencefrom agricultural extensions; g is a probability which characterizes the
influencefrom peersinapredefined neighboringarea; I isthe number of farmsin the predefined
neighboringareawho have already adoptedirrigation, and I;,;,; isthe size of neighborhood.

p and gin eq. AS-1are calculated monotonically increasing function of pre-suitability score.

P = Pmin + 1022)Trf;_pmin ' (S - Sthrehsold) (AS]-'Z)
threshold
and
q = Qmin + —ImaxImin_. (S - Sthrehsold) (AS1-3)

100 =S¢ preshold

where S isthe pre-suitability score forirrigation adoption of the farm, S;pesnoiais the threshold of pre-
suitability score forirrigation adoption to occur, ppax and Gmqx are values of p and g corresponding to
maximum value of pre-suitability score (100), and py,in and qmin are values of p and q correspondingto
threshold value of pre-suitability score.

The amount of water resources available forirrigation, WAI (m? H,0/yr), is calculated as

where WY isannual wateryield in the river basinin which the farm is located (m* H,0/yr), A;isthe
irrigated areain farms that have already adopted irrigation and belongto the same river basin (ha), and
w; is the irrigation water use intensity (m* H,0/ha-yr) on those farms.

The water demand foreach candidate irrigated crop, WD, (m* H,0/yr), is calculated as
WD.=w,-A (AS1-5)
where w, isirrigation water use intensity (m> H,0/ha-yr) for crop ¢ and 4 is farm size (ha).
The economic profit of cultivating each candidate irrigated crop, NP.($/yr-ha), is evaluated as
NP.=pf-y,—C; . —C (AS1-6)

other
where p€ isthe farmers’ price expectation for crop c ($/ton), y. isthe yield of the irrigated crop (ton/ha-
yr), Cir isirrigation costs ($/ha-yr), and Cy¢per is the crop production of other components ($/ha-yr).

The price expectationisformed by

i =pé-1+ (=) (Pc-1 —PE-1) (AS1-7)

III

where pce'_1 isthe expected price inthe last growing season ($/ton), p. _1 isthe “actual” price in the last
growingseason (S/ton),and (1 — A) isthe forecasting adjustment factor: price expectation will not
changeifA =1, and pf = p.—1if A = 0. Aisdrawn as a random number from uniform distribution
between0and 1, U(0,1), to reflect the heterogeneity inthe farmer’s price expectation.
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AS2: Sub-model 2: crop price change simulation

The algorithm usedinthis sub-model to simulate crop price change underthe influence of irrigation
adoptionis modified from the Dynamic Research EvaluAtion for Management (DREAM) model (Wood et
al., 2008). 12 regional markets are defined inthe sub-model, including 11 domesticregional markets
(correspondingto 11 administrativeregions) in Ethiopia and an additional market representingthe “Rest
Of World” (ROW).

For eachregion, alineardemand function is specified
Cot =V +6,P,, (AS2-1)

where C,is quantity of irrigated crop under simulation being consumedin regionrat time step t
(ton/yr),and B. is the price of theirrigated crop at time stept ($/ton). The slope and intercepts of the
lineardemand function are determined usinginitial crop production andinitial crop price att=0 and
price elasticity of demandinregionr, n,- (<0)

6T = nTCTO/PTO (ASZ-Z)
Vr = (1 - nr)/CTO (AS2-3)

Itis assumed that the prices in regional markets can be calculated as
P.,=1+v,)P, (AS2-4)

where v, is the market margin between region r and the market equilibrium price P;.
Since total production across all regional markets are equal to total consumption

> Q.=>.C, Wt (AS2-5)
r r
(where Qn isthe production of irrigated crop in region r (ton/yr), the market margins can be estimated
as
v, =5 _q (AS2-6)
r PO
where
_ 2rQro—ZrY¥ro _
P, = Ty, (AS2-7)

The crop priceinregionrand at time steptiscalculated using eq. AS2-4, where

_ 2r(Qro+AQr) =X+ ¥ro _
P, = e (AS2-8)

and AQ,+in AS2-8 denotesincreased crop production (ton/yr) inregionrandis calculated by summing
up allirrigated productionincellsinregionr

AQre = XiijerViipe " Adij.c) (AS2-9)

where cell/farm are indexed by its row numberiand column numberjin lattice, y(; j) ciscrop yieldin
cell/farm (i,j) (ton/ha-yr), and A(; ) ¢ is the farm size or the area of irrigated cropin cell/farm (i,j) (ha).
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