

Feed the Future Innovation Lab for Small Scale Irrigation

Modeling of Small Scale Irrigation (SSI) impacts using the Integrated Decision Support System (IDSS)

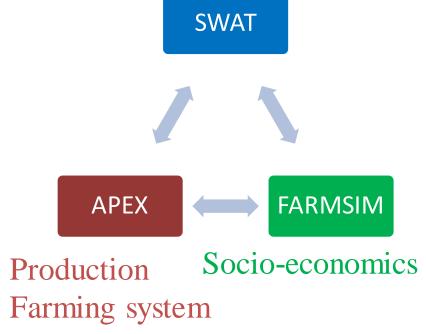
Texas A&M AgriLife Research Team, Jan 31, 2018 Texas A&M University

KEY QUESTIONS

- How much water/land is available for irrigation?
- How many farmers/households can it support?
- How sustainable is it?

• Now into future

- What are the bottlenecks & opportunities?
 o technologies, social/cultural, economics
- What are the optimum mixes of interventions?
- What difference will it make?
 - \circ income, health, and in the lives of people
- What changes in policy, practice and investments are necessary?
 o local, regional, national


INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

THE TEXAS A&

INTEGRATED DECISION SUPPORT SYSTEM (IDSS)

- SWAT analyze the potentials and impacts of SSI at the watershed scale
- APEX analyze cropping systems at the field scale, and
- FARMSIM assess economic & nutritional impacts at household level

APPLICATIONS OF IDSS?

- Ex-ante analysis
 - o Relied on existing data from literature and secondary sources
 - o Useful to study impacts of SSI
- Ex-post analysis
 - Used field data to fine-tune the ex-ante analysis
 - o Helped to understand more on the impacts of SSI
 - Vital for gaps and constraint analysis
- Gaps and constraints analysis to SSI
 - Critical to identify mitigation strategies for the gaps and constraints
- Upscaling analysis
 - Uses data and lessons learned from the ex-post analysis
 - Useful to understand the potentials and impacts of SSI at national level

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

IFPR

• Capacity building

EX-POST CASE STUDY: ROBIT SITE

BORLAUG

RESOURCE ASSESSMENT AT WATERSHED SCALE: ROBIT CASE, ETHIOPIA

• Average annual rainfall = 1,400 mm

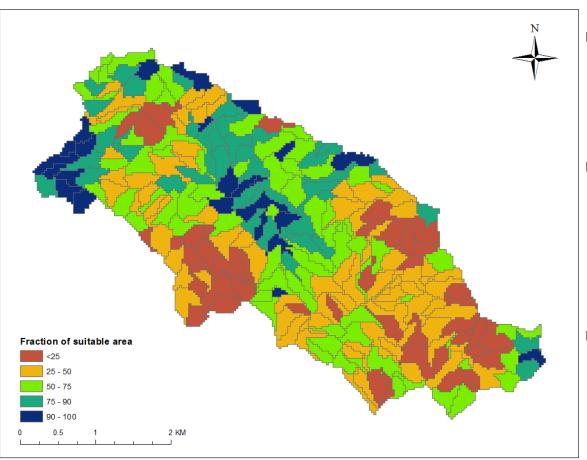
→ groundwater recharge = 280 mm (~4,000,000 m³ over the watershed)

- surface runoff = 520 mm(~7,000,000 m³ over the watershed)
- Amount of water required for dry season irrigation for tomato = $1,500,000 \text{ m}^3$

THE TEXAS A&M

UNIVERSITY SYSTEM

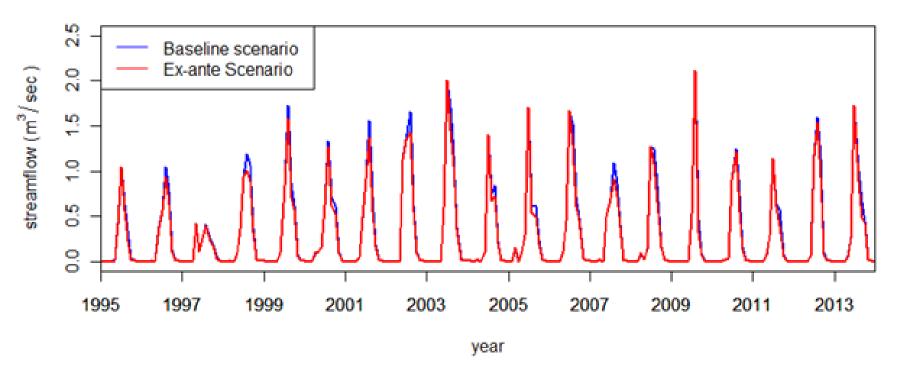
→ ~40% of the groundwater recharge


POLICY RESEARCH INSTITUTE

• At the watershed scale, groundwater recharge can support irrigation for vegetables (in suitable areas) in a sustainable manner.

LAND SUITABILITY FOR IRRIGATION

- ~57% of the watershed is suitable for irrigation.
- Major rainfed crops were maize, teff and finger millet.
- Dry season irrigated crops were tomato and onion.



IMPACTS OF SSI AT THE WATERSHED SCALE

- Minor reductions in streamflow amount and timing,
- No major environmental impact such as soil erosion.

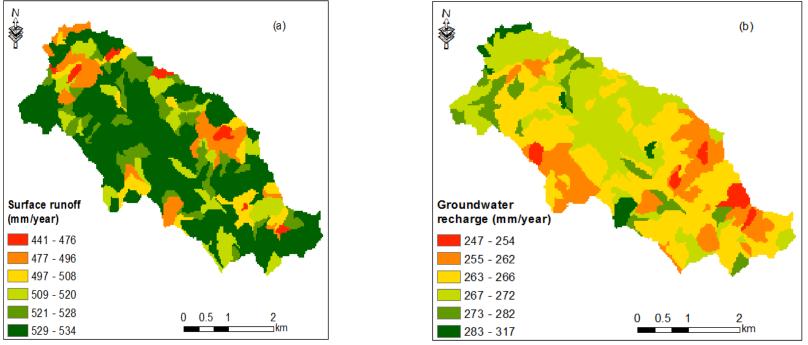
THE TEXAS A&M

UNIVERSITY SYSTEM

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

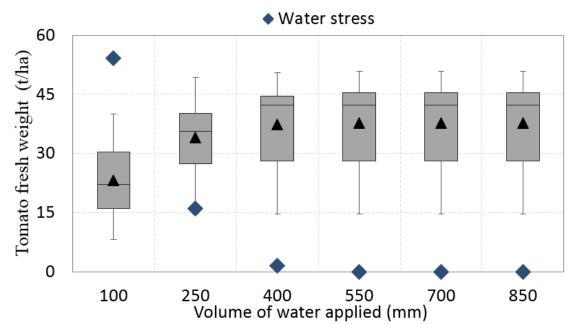
IFPRI

Institut


LIVESTOCK RESEARCH

ROBIT SURFACE RUNOFF AND SHALLOW GROUNDWATER RECHARGE

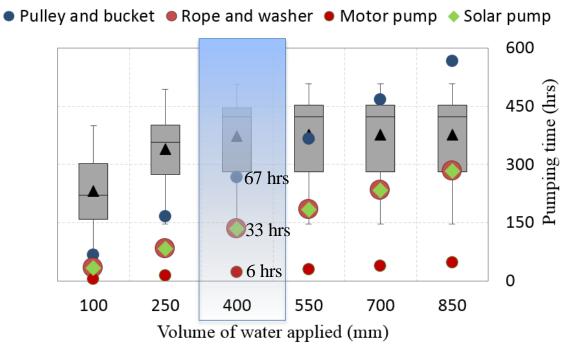
 estimating the water resource potential to determine irrigation potential at watershed scale.



ROM THE AMERICAN PEOPL

WATER USE FUNCTION OF TOMATO

- Average tomato yield ranges b/n 23-37 ton/ha depending on the irrigation amount
- Optimal water to maximize tomato yield is 400 mm/year, which is higher than the average annual shallow groundwater recharge.
- Water is a constraint if groundwater is the only source of irrigation.

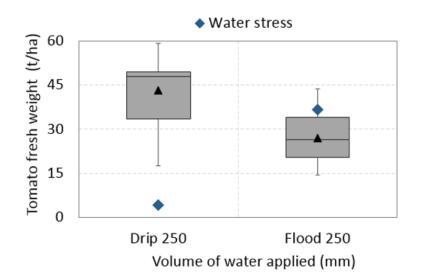


WATER USE FUNCTION AND PUMPING TIME OF TOMATO

Over-irrigation:

- Costs more time and money
- A threat to irrigation expansion

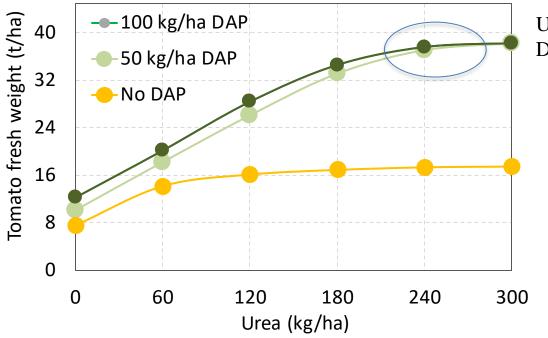
INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE sustainable solutions for ending hunger and poverty Water



TESTING IRRIGATION APPLICATION OPTIONS

Crop yield and water stress days of drip and flood irrigation

Drip irrigation improves crop water productivity, and reduces water loss.



FERTILIZER USE EFFICIENCY OF TOMATO

Urea – nitrogen-based fertilizer, and DAP – phosphorous-based fertilizer

• Optimal fertilizer use is at 200-250 kg/ha Urea with 50-100 kg/ha DAP,

THE TEXAS A&M

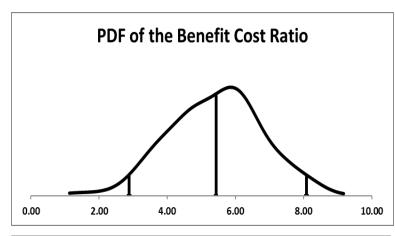
UNIVERSITY SYSTEM

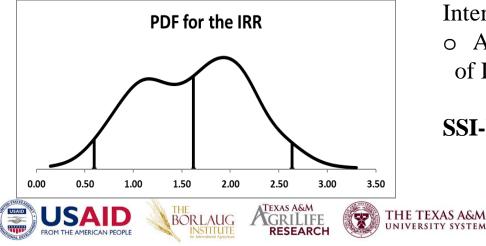
INTERNATIONAL FOOD

IFPR

POLICY RESEARCH INSTITUTE

• Farmers' practice is far lower and of different proportional rates.

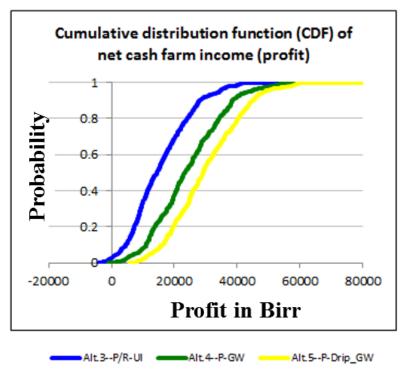

TEXAS A&M


BORLAUG

PROFITABILITY OF SSI: COST-BENEFIT ANALYSIS (B/C RATIO AND IRR)

Benefit-Cost (B/C) ratio for Alt. 1 scenario (Pulley/Baseline)
o Average B/C = 5.3 and probability of B/C > 1 is 100%

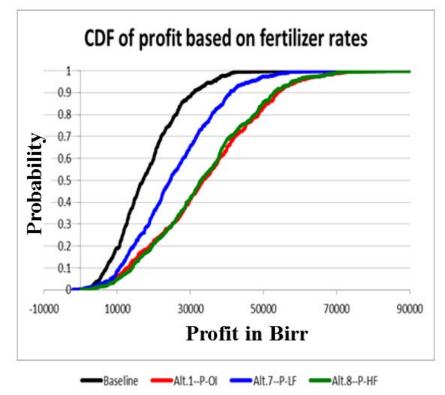
Internal Rate of Return (IRR) for Alt. 1 scenario • Average IRR = 1.6 and probability of IRR > 0.1 is 100%


IVESTOCK RESEARCH

SSI-Pulley is found to be profitable

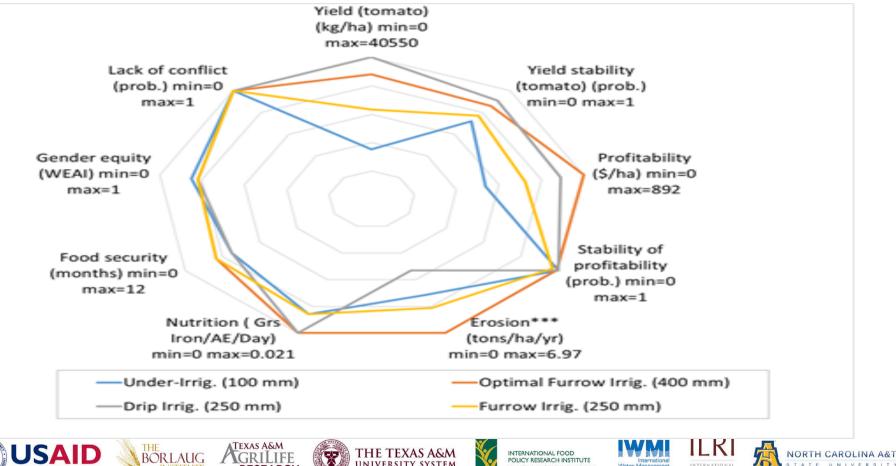
GAP AND CONSTRAINT ANALYSIS: SSI TECHNOLOGY

- Description of the scenarios
 - Alt.3--P-UI: Pulley with 100 mm in furrow irrigation
 - Alt.4--P-GW: Pulley with 250 mm in furrow irrigation
 - Alt.5--P_Drip-GW: Pulley with 250 mm in drip irrigation
- Alt. 5 is more profitable and efficient in water limited situation
- Alt.3 (in extremely dry situation) is lowest ranking in profitability



GAP AND CONSTRAINT ANALYSIS: FERTILIZER TECHNOLOGY

- Description of the fertilizer scenarios:
 - **Baseline**: current fertilizer rates
 - Alt. 1: application of optimal fertilizer rates (Urea-DAP): 240-100 kg/ha
 - Alt. 7: application of 50-120 kg/ha (lower than optimal)
 - Alt. 8: application of 300-100 kg/ha (higher than optimal
- All the 3 alternative scenarios are profitable compared to the baseline.



SYNERGIES AND TRADEOFFS OF INTENSIFICATION OF SSI

UNIVERSITY SYSTEM

RESEARCH

ROM THE AMERICAN PEOPLE

POLICY RESEARCH INSTITUTE

IFPRI® Supported by the CGIAR

istainable solutions for ending hunger and povert

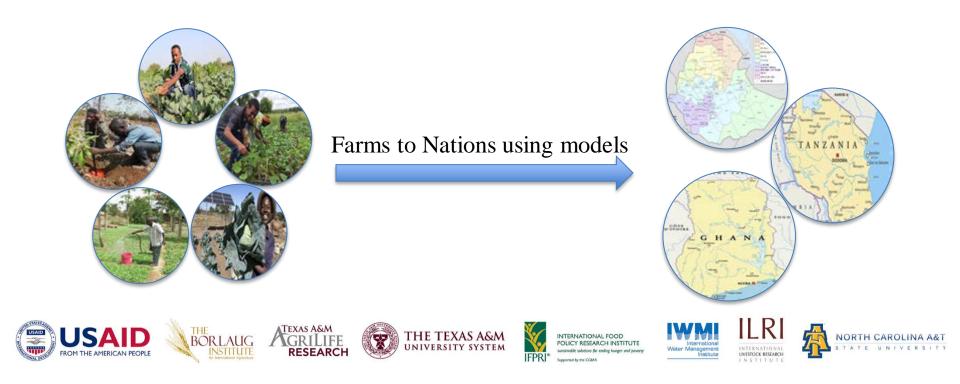
Water Management

LIVESTOCK RESEARCH

TATE UNIVERSITY

CONCLUSIONS AND IMPLICATIONS

- Use of a pulley for vegetable/fodder irrigation showed profitability,
- Drip irrigation showed higher profitability and also water use efficiency compared to furrow irrigation,
- Impact to the environment was minimal,
- Higher economic profit was obtained with optimal fertilizer rates,
- Daily minimum nutrition requirement were met with alternative scenarios except for fat and calcium.


INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

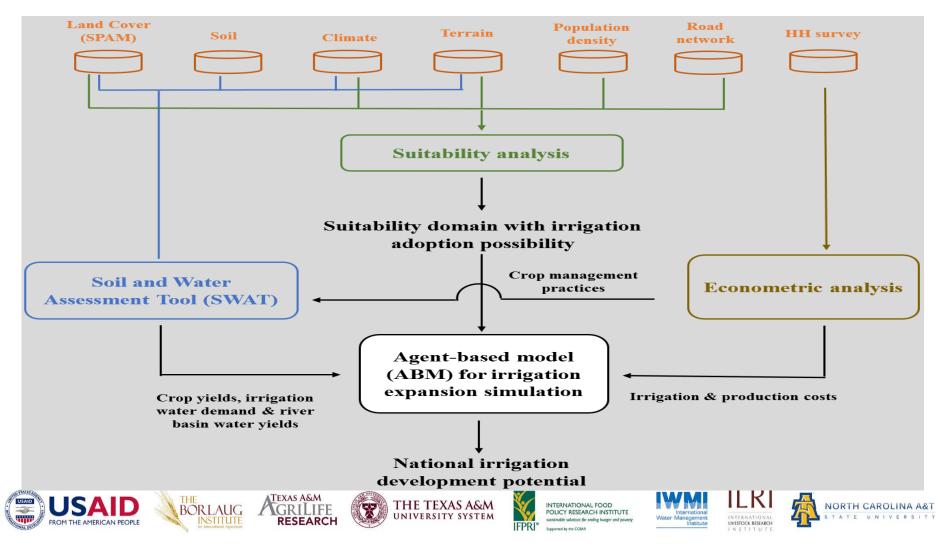
THE TEXAS A&M

Planning and evaluation of Small Scale Irrigation at national scale

UPSCALING ANALYSIS, WHY?

- ILSSI research showed SSI improves agricultural production, environmental sustainability and household income & nutrition at the household level. The main questions though are:
 - What is the scale of investment for expanding SSI?
 - Where are strategic investment potential areas? and
 - What are the environmental and socio-economic impacts?
- Upscaling instrumental to address these and other questions.

TEXAS A&M



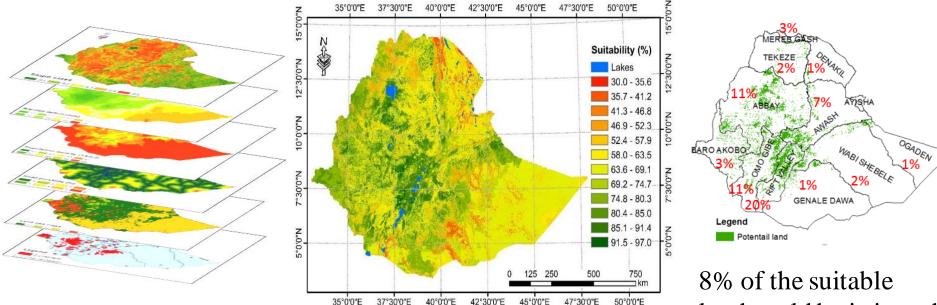
UPSCALING ANALYSIS FRAMEWORK

SPATIALLY EXPLICIT ESTIMATION

- Spatial Production Allocation Model (SPAM) to disaggregate the land use data into different crop types for SWAT,
- SWAT to estimate spatially explicit water availability, water consumption, crop yields, and environmental impacts, and
- ABM to estimate economic-cost benefit and water balance.

AGENT-BASED MODEL (ABM) OUTPUT

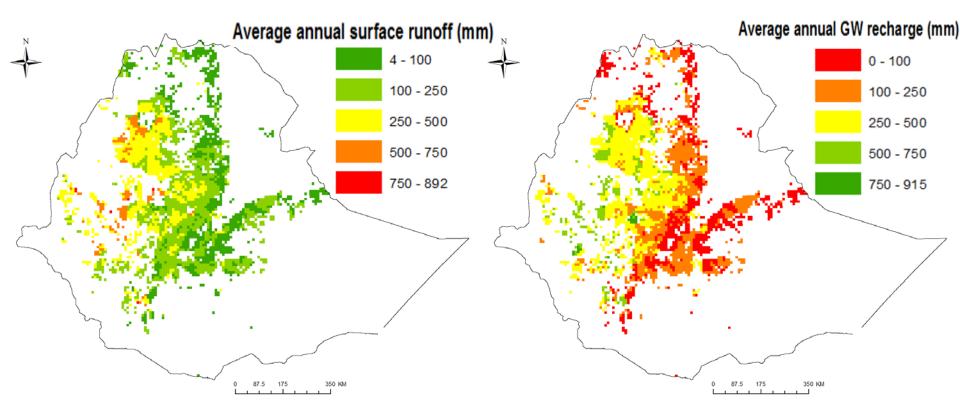
- Adoption probability and area of SSI in each geographic domain across the country,
- Environmental risk of water scarcity due to the adoption,
- Economic benefit for irrigators from the adoption, and
- Number of beneficiary population.



SUITABLE IRRIGABLE LAND

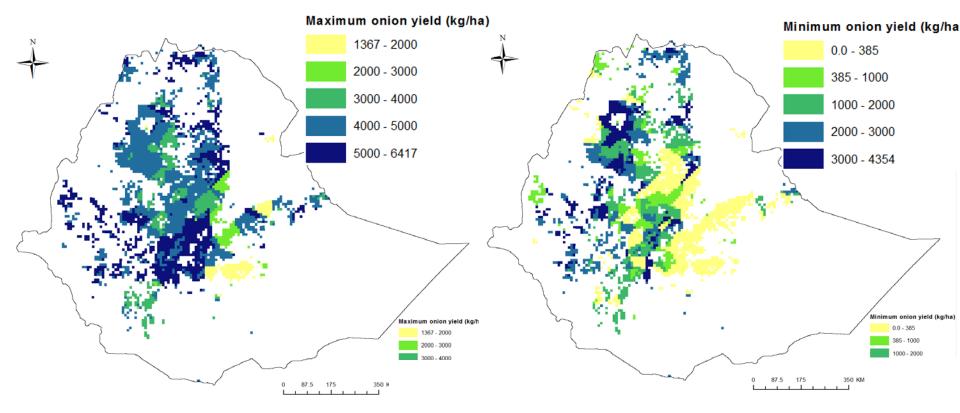
Overlay analysis

Preliminary Suitability Map 12% rainfed land = 6.0 million ha 8% of the suitable land could be irrigated with the shallow groundwater


INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE sustainable solutions for ending hunger and pover

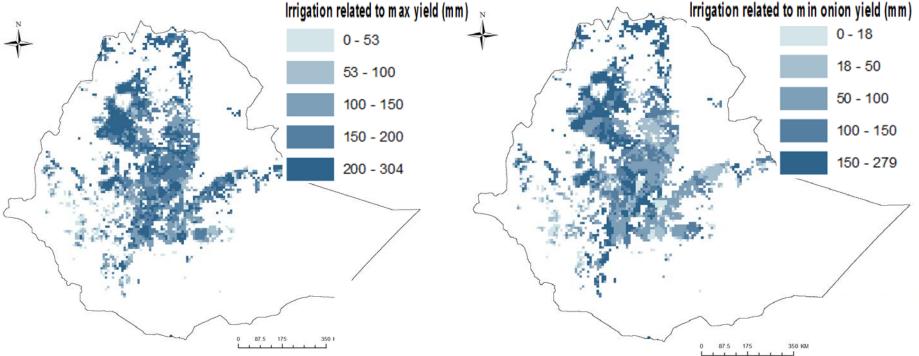
WATER RESOURCES POTENTIAL

• A significant amount of surface runoff and groundwater recharge available across the country to expand SSI.



POTENTIAL FOR VEGETABLE PRODUCTION

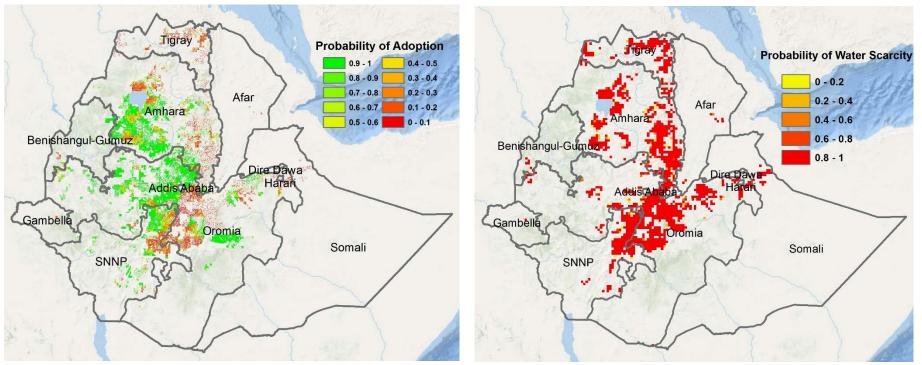
• A large part of the country, productive for producing vegetables and fodder during the dry season



NORTH CAROLI

IRRIGATION FOR DRY SEASON CROPPING (E.G. ONION)

• Only modest amount of irrigation needed to produce significant amount of vegetable and fodder during the dry season.



PROBABILITY OF IRRIGATION ADOPTION AND WATER SCARCITY

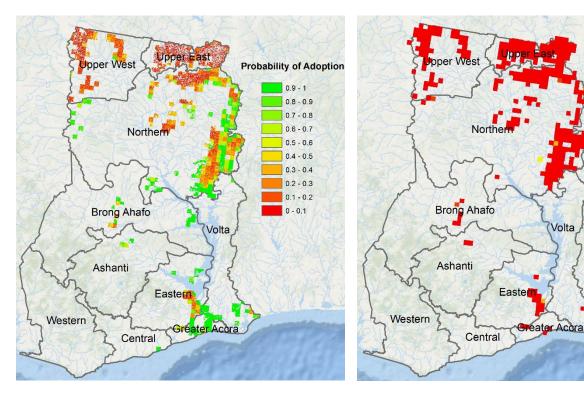
- High adoption probability for SSI at Lake Tana and Ethiopian Great Rift Valley areas, and
- SSI development may pose widespread water scarcity.

ESTIMATED SMALL-SCALE IRRIGATION ADOPTION POTENTIAL IN ETHIOPIA

	Vegetables & pulses (ha)	Fodder (ha)	Total (ha)	Profits (Million USD/yr)	Number of beneficiaries (Thousand People)		
Addis Ababa	0	0	0	0	0		
Affar	51	14	66	0.1	0.4		
Amhara	314,394	141,047	455,440	1,066	2,581		
Benishangul-Gumuz	15,861	259	16,120	37	91		
Dire Dawa	0	51	51	0.08	0.3		
Gambella	594	0	594	2.3	3		
Harari	0	46	46	0.2	0.3		
SNNP	77,602	40,569	118,171	399	670		
Tigray	5,686	6,596	12,282	45	70		
Oromiya	261,401	172,218	433,619	1,041	2,457		
Somali	27	219	245	1	1		
Total	675,642	361,021	1,036,663	2,593	5,874		
• A pat income of 2.6 billion USD/year from the SSI adaption							

A net income of ~2.6 billion USD/year from the SSI adoption,

Amhara, Oromia and SNNPR having the highest SSI adoption potential.

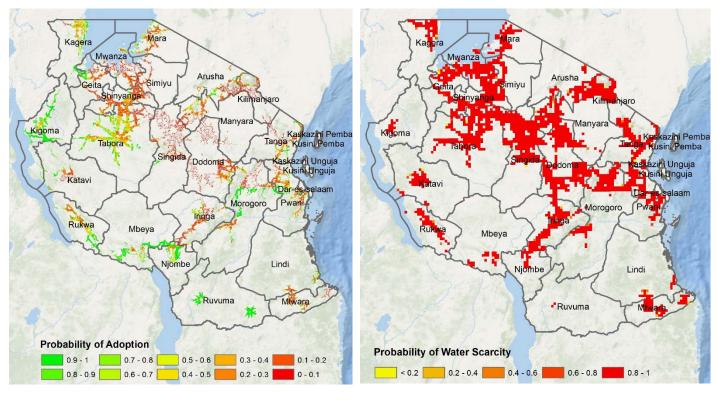


SMALL-SCALE IRRIGATION DEVELOPMENT POTENTIAL IN GHANA

Potential area Probability of 210,572 ha Water Scarcity **Profits** 0.2 - 0.4 0.4 - 0.6285 million USD/yr 0.6 - 0.8 0.8 - 1 Number of beneficiaries 0.68 million people

Volta

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE lutions for ending hunger and povert Supported by the CGIA

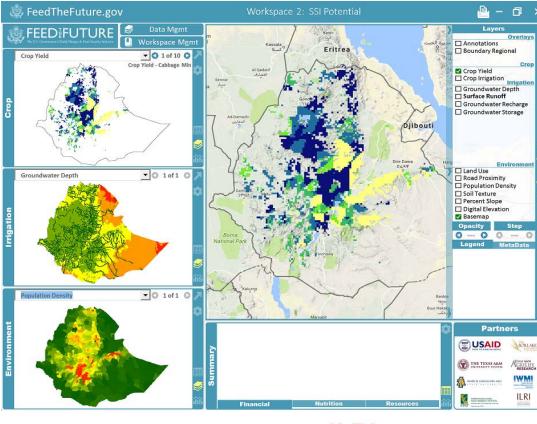

< 0.2

SMALL-SCALE IRRIGATION DEVELOPMENT POTENTIAL IN TANZANIA

Potential area 573,886 ha Profits 1,310 million USD/yr Number of beneficiaries 2 million people

DEVELOPMENT OF DASHBOARD TO HARNESS THE POWER OF IDSS

THE TEXAS A&M


UNIVERSITY SYSTEM

- Alleviating end-users from being an expert in any specific models but to leverage from obtained results
- Planning and evaluation of SSI at multiple levels of scale
- Support analysis for expanding SSI and its impacts, and identification of strategic investment areas
- Targeted end-users include:
 - Farmers and farmer organizations
 - Agents/practitioners that provide education and outreach

TEXAS A&M

RESEARCH

NORTH CAROLIN

IVESTOCK RESEARCH

INTERNATIONAL FOOD

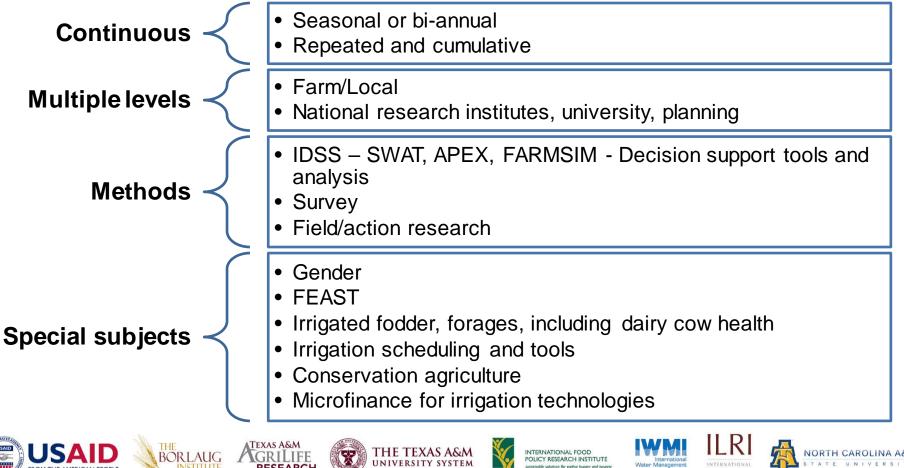
IFPRI

POLICY RESEARCH INSTITUTE

CONCLUDING REMARKS

- Ample land and water resources available in Ethiopia for SSI expansion,
- More than 0.8 million ha of land is economically and biophysically suitable for SSI expansion generating ~2.6 billion USD/year, and
- SSI development may pose widespread water scarcity.

CAPACITY DEVELOPMENT WITH IDSS



ILSSI APPROACH TO CAPACITY DEVELOPMENT

IFPR

FARM/LOCAL TRAINEES – ALL COUNTRIES

Year	Producers	Civil servants	Private sector	Civil society	M/F
1	63	-	-	-	41/22
2	260	26	5	2	203/90
3	356	28	1	76	349/112
4	259	61	30	115	314/151
ALL	938	115	36	193	907/375

FARMER AND FIELD LEVEL

Subject	Target group(s)	Frequency	Countries
Water and soil management	Farmers, Extension	Each irrigation season	All
Irrigation scheduling	Farmers, Extension	Each irrigation season	Ethiopia, Ghana
Post-harvest handling and marketing	Farmers	Each irrigation season	Ghana
Farmer forums and exchanges – consolidate learning, build networks	Farmers	After each irrigation season	Ethiopia, Ghana
Conservation agriculture	Farmers, Extension	Start of irrigation season	All
Savings and credit trainings cooperatives	Farmers, Finance cooperative	Start of field trials	Ethiopia
Improved forage development, irrigation, dairy health	Farmers	Start of field trials and refresher trainings	All
Intercropping grasses, forage legumes under SSI, dairy cow	Farmers, Extension, Subject experts	Start of field trials and refresher trainings	All
FROM THE AMERICAN PEOPLE	UNIVERSITY SYSTEM	NTERNATIONAL FOOD	NORTH CAROLINA A&T

STUDENT RESEARCH/MENTORING IN FIELD STUDIES

- Graduate students (26) and Honor's Undergraduate students (10)
- Capacity development and mentoring:
 - Matched with home university faculty and IWMI researcher
 - Mentored through proposal, research design, field work, data collection, analysis, writing and presenting

POLICY RESEARCH INSTITUTE

- Financial support for field work, data collection, lab analysis
- Results:
 - 22 theses papers (as of September 2017)
 - 1 awarded outstanding thesis for MSc economics (Ethiopia)

THE TEXAS A&

- 3 international conference papers accepted
- 14 students to complete theses in final project year

CAPACITY BUILDING ON IRRIGATION-GENDER LINKAGES

- > 150 national experts with a focus on irrigation / gender participated in gender and irrigation capacity building and knowledge exchange events Ethiopia, Ghana, and Tanzania
- Resources from the workshops are available online
- Blog on <u>WLE Thrive</u>
- ILSSI Project Note, based on workshop discussions, identifies key concepts, opportunities, and constraints to <u>Promoting Gender Equality</u> in <u>Irrigation</u> and other publications
- Insights were used by WARIDI, a large integrated wat res man project in Tanzania for their gender strategy
- Insights were used by Ethiopia ATA in their work on ensuring gendersensitivity of irrigation

CAPACITY DEVELOPMENT FROM IDSS

- Graduate professional training in U.S. institutions (2-3 years)
- Extended training for graduate students and university faculty from project countries (90-day)
- Regular workshops (5-day)
- Institutionalization of IDSS (long term commitment)
- Continued support to stakeholders, graduate students, and CG systems (long term commitment)

IDSS TRAINING: DEMAND DRIVEN AND SOURCE OF INPUT TO ILSSI

- Based on user demand, the content of the training have been updated and additional workshop packages have been included, e.g.
 - o IDSS-clinic,

BORLAUG

TEXAS A&M

- o Advanced SWAT Training, and
- Ethiopian Agricultural Transformation Agency (ATA) tailored IDSS training for irrigation planning
- The workshops were important venue to exchange data and receive feedbacks on SSI practices in the project countries

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

IVESTOCK RESEARCH

THE TEXAS A&M UNIVERSITY SYSTEM

INSTITUTIONALIZING IDSS

- **Universities** included IDSS models in their curricula to train the next generation scientists and professionals, e.g.
 - o Addis Ababa University and Bahir Dar University, Ethiopia
 - Sokoine University of Agriculture, University of Dar es Salaam, and Nelson Mandela African Institute of Science and Technology, Tanzania
- Government Institutions use IDSS for planning and evaluation of government initiatives, e.g.
 - o Ethiopian Agricultural Transformation Agency (ATA),
 - Abay (Blue Nile) Basin Authority Ethiopia,
 - o Water Research Institute, Ghana
- CGIAR centers, NGOs and Private sector for environmental analysis and engineering design
 - CIAT, IWMI, Ethiopian Construction Works Design and Supervision Enterprise (ECWDSE) and various private agencies

ALL IDSS TRAINING

Ethiopia Tanzania Ghana Total Grand M F M F M F M F M F Total 327 41 128 42 100 30 555 113 668

A total of 10 training workshops in Ethiopia, Ghana and Tanzania

OVERALL OUTPUTS

- More than 50 reports and scientific articles produced individual model per site, integrated site, and country reports, as well as scientific articles on the three ILSSI countries.
- Data for all the reports were shared to partners including through the Texas A&M University Library Dataverse. The data include:
 - Model outputs from SWAT, APEX and FARMSIM, which aid planning of SSI adoption,
 - Map for potential land suitability for SSI, and
 - Groundwater depth, Digital Elevation Model (DEM), high resolution soil and land use.
- Tools and models
 - SWAT/APEX/FarmSIM models, and QSWAT and Win-APEX interfaces
 - SSI Dashboard SSI for planning and evaluation at multiple levels of scale
 - Land suitability mapping tool, and
 - Weather data bias correction tool

OVERALL OUTCOMES

- IDSS helpful tool to identify strategies to mitigate gaps and constraints of SSI
- SSI and application of optimal fertilizer rates increased agricultural production and economic outcome
- The source of the water, and the most profitable technology were site specific
 - Solar pumps economical and workable
 - Labor a major limitation on using low cost technology
- Minimal to modest environmental impacts due to adoption of SSI
- Substantial potential for scaling SSI nationally, e.g. more than 4.5 million people benefited and more than 2.6 Billion USD/year generated using SSI in Ethiopia
- Key personnel trained with IDSS application, and IDSS institutionalized to educate the next generation scientists and professionals to scale up SSI
- A dashboard developed for planning and evaluation of SSI

FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

