

Experiences: Irrigated Forages in Ethiopia

Aberra Adie, A. Yitayew, B.Demeke, Y. Ferede, L. Yeheyis, D. Gemiyu, B. Zeleke, M. Bezabih, P. Schmitter and M. Blümmel

OBJECTIVE

Exploring irrigated forage cultivation to:

- Explore irrigated fodder/forage cultivation as entry point to diversification, intensification and sustainability
- Improve on farm meat and milk production for improved household nutrition and income through filling feed quality gaps in dry season
- Evaluate forage production as cash crop, livelihood and employment strategy

APPROACHES

- Assessment of feed resources, importance and demand for planted forage, and forage preference (demand vs supply driven)
- Testing of annual and perennial grasses and legumes for biomass production, feed-back loops, modification in following cropping seasons
- Mix on actual livestock productivity trials and modeling of animal performance (forage yield >forage quality> estimation of meat and milk production)
- Fodder market studies for demand, price quality relationships and value chain characteristics to assess forage-as-cash crop fro micro and small enterprise

KEY FINDINGS AND CONSIDERATIONS

 Performance of annual (oats, vetch) and perennial (Napier, Desho) forage

 Additional forage management options supporting increased productivity and sustainability (food-feedfodder, soil, water)

• Feeding of planted forages to own livestock vs forage market participation

- Each farmer allocated 100m² plot of land, planted oats, vetch and oat-vetch mixture
- Irrigated the plots once weekly, weeded twice in the growth cycle
- The plots subjected to different harvesting treatments
 - One times cutting after 85 days
 - Two times cutting after 40 and 85 days
 - Three times cutting after 40, 85 and 120 days
- Biomass quantity and quality measured

Generally: two cut oats, vetch management preferred farmer option

Treatment	Yield (t DM/ha)	CP (%)	ME (MJ/kg)
Oats Single Harvest	7.60	5.56	7.67
Oats Double Harvest	8.61	11.43	8.25
Oats-Vetch Single Harvest	9.35	5.13	7.51
Oats-Vetch Double Harvest	12.18	9.9	8.14

Double Harvest superior to Single Harvest

Oats - Vetch Mix superior to Oats

THE TEXA

UNIVERSITY SYSTEM

- Each farmer allocated 100 m² plot of land initially , for Napier grass establishment
- Shallow wells and pulley system to lift water and irrigate the plots
- Irrigation once to twice weekly depending on soil moisture
- Fodder quantity and quality measured

Perennial Forages – Multiple harvests

SEARCH

Ecosystems

CGIAR

ater. Land and

ORTH CAROLINA

STATE UNIVER

- Napier could be harvested during the course of a year between 6 and 9 times
- Relative to a 12 month growing period a minimum of 17.9 t/ha and a maximum of 23 tons dry matter per ha were observed
- Desho grass yields about 28 t DM /ha annually. Farmer perception of higher water use efficiency of Desho compared to Napier.

THE TEXAS A&M

BORLALIC

NATIONAL FOOD

Irrigated Forage Use on Farm Versus Forage as Cash Crop Example Oats-Vetch Mix

Assuming all oat-vetch is used for milk production (not for maintenance), a 100m² oat-vetch mix can give 280kg milk

> But the efficiency depends on the productivity of animals

- Forages as cash crop options:
 - Fresh grass (Desho) prices
 for supplier: 1.5 2.0
 birr/kg
 - Fresh forage market
 relatively young
 compared to dry feed
 (hay, straw) but emerging

Open fodder markets

THE TEXAS A&M

RESEARCH PROGRAM ON Water, Land and Ecosystems

Days required in dependence of cow productivity

	Productivity of cows (kg milk per day)			
	3	6	9	12
Days required to produce 280 kg milk	93	47	31	23

THE

THE TEXA

UNIVERSITY SYSTEM

Irrigated Forage Use on Farm Versus Forage as Cash Crop

	Total milk produced if cows give			
	3 kg	6 kg	9 kg	12 kg
Milk yield from use of single cut oats-vetch produced from 100 m ²	75	118 kg	146 kg	166 kg

On-farm trial: Effect of supplementing 2.0 kg oatvetch hay daily on milk yield of lactating cows

Breed type	Milk yield (Lt/day/cow)			
	Before supplementation	After supplementation		
Cross-bred	3.0±1.0	5.33±1.04		
Local cow	1.75±0.5	2.75±0.65		

Assume:

Napier could be harvested 6 to 9 times in 12 months

Relative to a 12 month growing period, a minimum yield of 17.9 t/ha and a maximum of 23 t/ha dry matter were recorded

Gross value at approximately 150 000 to 200 000 Birr per hectare at fodder markets

Note: up-rooting of Chad and replacement by irrigated fodder observed

Multi-use/multi-objective of irrigated forages: rational

- Extreme scarcity of bio-physical and socio-economic resources
- Risk avoidance and mitigation
- Paradigm of increasing overall productivity in mixed systems

Napier intercropped with Desmodium: fodder quality (protein from Desmodium) plus soil improvement (N-fixation)

Napier intercropped with Pigeonpea: food (grain) plus fodder quality (protein) plus soil improvement (N-fixation)

Hard pan break up – intercropping of pigeon pea with maize increased total productivity

SEARCH

• <u>Awareness creation</u> through meetings and group discussions

- <u>Selection and training of</u> farmers who showed interest
- Initially 17 farmers were involved, which grew to 300 in the subsequent seasons

OVERALL CONCLUSION

Allocating land and water exclusively for forage production in small holdings a new departure in Ethiopia but:

Land allocation (doubled on average)

Farm manure application

Seed demand

Numbers of farmers

clearly suggest: irrigated fodder is a realistic and attractive option in Ethiopia for small holdings

WHERE TO GO FROM HERE

- From experimental/anecdotal to structured impact assessment
- Scaling needs to be planned, central and regional policy support, private sector inclusion (for example seed sector)
- TAMU modeling key for defining demand and opportunity domains (integrated into Ethiopia Feed Supply Demand tool?)
- More structured value chain approach required (*feed/fodder value chain*) with attention given to off-farm actors, activities and transactions

🖳 Feedbase_Main

Data Management Data Entry Analysis Held

Thank you for your attention!

RESEARCH PROGRAM ON Water, Land and Ecosystems

U.S. GOVERNMENT PARTNERS

CGIAR

RESEARCH PROGRAM ON Water, Land and Ecosystems

NORTH CAROLINA

A&T STATE UNIVERSIT

THE TEXAS A&M

UNIVERSITY SYSTEM

FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

PARTNER LOGO GOES HERE (click slide master to add)